Objectives of this chapter:

- Use of environment models
- Integration of planning and learning methods
Models

- **Model**: anything the agent can use to predict how the environment will respond to its actions
- **Distribution model**: description of all possibilities and their probabilities
 - e.g., $P_{ss'}^a$ and $R_{ss'}^a$, for all $s, s', a \in A(s)$
- **Sample model**: produces sample experiences
 - e.g., a simulation model
- Both types of models can be used to produce *simulated experience*
- Often sample models are much easier to come by
Planning

- **Planning**: any computational process that uses a model to create or improve a policy

- **Planning in AI:**
 - state-space planning
 - plan-space planning (e.g., partial-order planner)

- We take the following (unusual) view:
 - all state-space planning methods involve computing value functions, either explicitly or implicitly
 - they all apply backups to simulated experience
Planning Cont.

- Classical DP methods are state-space planning methods
- Heuristic search methods are state-space planning methods
- A planning method based on Q-learning:

Do forever:
1. Select a state, $s \in S$, and an action, $a \in A(s)$, at random
2. Send s, a to a sample model, and obtain a sample next state, s', and a sample next reward, r
3. Apply one-step tabular Q-learning to s, a, s', r:

 \[Q(s, a) \leftarrow Q(s, a) + \alpha [r + \gamma \max_{a'} Q(s', a') - Q(s, a)] \]

Random-Sample One-Step Tabular Q-Planning
Two uses of real experience:
- **model learning**: to improve the model
- **direct RL**: to directly improve the value function and policy

Improving value function and/or policy via a model is sometimes called **indirect RL** or **model-based RL**. Here, we call it **planning**.
Direct vs. Indirect RL

- **Indirect (model-based) methods:**
 - make fuller use of experience: get better policy with fewer environment interactions

- **Direct methods**
 - simpler
 - not affected by bad models

But they are very closely related and can be usefully combined: planning, acting, model learning, and direct RL can occur simultaneously and in parallel.
The Dyna Architecture (Sutton 1990)
The Dyna-Q Algorithm

Initialize $Q(s, a)$ and Model(s, a) for all $s \in S$ and $a \in A(s)$

Do forever:

(a) $s \leftarrow$ current (nonterminal) state

(b) $a \leftarrow \epsilon$-greedy(s, Q)

(c) Execute action a; observe resultant state, s', and reward, r

(d) $Q(s, a) \leftarrow Q(s, a) + \alpha \left[r + \gamma \max_{a'} Q(s', a') - Q(s, a) \right]$

(e) Model$(s, a) \leftarrow s', r$ (assuming deterministic environment)

(f) Repeat N times:

\begin{align*}
& s \leftarrow \text{random previously observed state} \\
& a \leftarrow \text{random action previously taken in } s \\
& s', r \leftarrow \text{Model}(s, a) \\
& Q(s, a) \leftarrow Q(s, a) + \alpha \left[r + \gamma \max_{a'} Q(s', a') - Q(s, a) \right] \\
\end{align*}
Dyna-Q on a Simple Maze

rewards = 0 until goal, when = 1
Dyna-Q Snapshots: Midway in 2nd Episode

\[\text{WITHOUT PLANNING (} N = 0 \text{)} \quad \text{WITH PLANNING (} N = 50 \text{)} \]
When the Model is Wrong: Blocking Maze

The changed environment is harder
Shortcut Maze

The changed environment is easier
What is Dyna-Q$^+$?

- Uses an “exploration bonus”:
 - Keeps track of time since each state-action pair was tried for real
 - An extra reward is added for transitions caused by state-action pairs related to how long ago they were tried: the longer unvisited, the more reward for visiting
 - The agent actually “plans” how to visit long unvisited states
Prioritized Sweeping

- Which states or state-action pairs should be generated during planning?
- Work backwards from states whose values have just changed:
 - Maintain a queue of state-action pairs whose values would change a lot if backed up, prioritized by the size of the change
 - When a new backup occurs, insert predecessors according to their priorities
 - Always perform backups from first in queue
- Moore and Atkeson 1993; Peng and Williams, 1993
Prioritized Sweeping

Initialize $Q(s, a)$, $Model(s, a)$, for all s, a, and $PQueue$ to empty.
Do forever:

(a) $s \leftarrow$ current (nonterminal) state
(b) $a \leftarrow policy(s, Q)$
(c) Execute action a; observe resultant state, s', and reward, r
(d) $Model(s, a) \leftarrow s', r$
(e) $p \leftarrow |r + \gamma \max_{a'} Q(s', a') - Q(s, a)|$
(f) if $p > \theta$, then insert s, a into $PQueue$ with priority p
(g) Repeat N times, while $PQueue$ is not empty:
 $s, a \leftarrow first(PQueue)$
 $s', r \leftarrow Model(s, a)$
 $Q(s, a) \leftarrow Q(s, a) + \alpha [r + \gamma \max_{a'} Q(s', a') - Q(s, a)]$
 Repeat, for all \bar{s}, \bar{a} predicted to lead to s:
 $\bar{r} \leftarrow$ predicted reward
 $p \leftarrow |\bar{r} + \gamma \max_a Q(s, a) - Q(\bar{s}, \bar{a})|$
 if $p > \theta$ then insert \bar{s}, \bar{a} into $PQueue$ with priority p
Both use N=5 backups per environmental interaction.

Prioritized Sweeping vs. Dyna-Q

![Graph showing backups until optimal solution for Dyna-Q and prioritized sweeping]

Gridworld size (#states)
Rod Maneuvering (Moore and Atkeson 1993)
Full and Sample (One-Step) Backups

Value estimated

<table>
<thead>
<tr>
<th>Full backups (DP)</th>
<th>Sample backups (one-step TD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V^\pi(s)$</td>
<td>$V^\pi(s)$</td>
</tr>
<tr>
<td></td>
<td>max</td>
</tr>
<tr>
<td></td>
<td>$Q^\pi(a,s)$</td>
</tr>
<tr>
<td></td>
<td>max</td>
</tr>
<tr>
<td></td>
<td>$Q^\pi(a,s)$</td>
</tr>
</tbody>
</table>

Policy evaluation

Value iteration

Q-policy evaluation

Q-value iteration

TD(0)

Sarsa

Q-learning
Full vs. Sample Backups

b successor states, equally likely; initial error = 1; assume all next states’ values are correct
Trajectory Sampling

- **Trajectory sampling**: perform backups along simulated trajectories
- This samples from the on-policy distribution
- Advantages when function approximation is used
- Focusing of computation: can cause vast uninteresting parts of the state space to be (usefully) ignored:

![Diagram showing initial states, reachable under optimal control, and irrelevant states.](image-url)
Trajectory Sampling Experiment

- one-step full tabular backups
- uniform: cycled through all state-action pairs
- on-policy: backed up along simulated trajectories
- 200 randomly generated undiscounted episodic tasks
- 2 actions for each state, each with b equally likely next states
- $.1$ prob of transition to terminal state
- expected reward on each transition selected from mean 0 variance 1 Gaussian
Heuristic Search

- Used for action selection, not for changing a value function (=heuristic evaluation function)
- Backed-up values are computed, but typically discarded
- Extension of the idea of a greedy policy — only deeper
- Also suggests ways to select states to backup: smart focusing:

![Diagram of a tree structure representing the use of heuristics in decision-making processes. The tree shows various nodes and branches, indicating the flow of decision-making through heuristics.](image-url)
Summary

- Emphasized close relationship between planning and learning
- Important distinction between distribution models and sample models
- Looked at some ways to integrate planning and learning
 - synergy among planning, acting, model learning
- Distribution of backups: focus of the computation
 - trajectory sampling: backup along trajectories
 - prioritized sweeping
 - heuristic search
- Size of backups: full vs. sample; deep vs. shallow