Beyond Classical Search: Local Search

CMPSCI 383
September 23, 2011
Today’s lecture

• Local Search
 • Hill-climbing
 • Simulated annealing
 • Local beam search
 • Genetic algorithms
 • Genetic programming
 • Local search in continuous state spaces
Recall: Evaluating a search strategy

- **Completeness** — Does it always find a solution if one exists?
- **Optimality** — Does it find the best solution?
- Time complexity
- Space complexity
Example: Breadth-first search

- **Complete?**
 - Yes (if b finite)

- **Optimal?**
 - Yes, if cost = 1 per step
 - Not optimal in general

- **Time**
 - $1+b+b^2+b^3+...+b^d+b(b^d-1) = O(b^{d+1})$

- **Space**
 - $O(b^{d+1})$
Is $O(b^{d+1})$ a big deal?

<table>
<thead>
<tr>
<th>Depth</th>
<th>Time</th>
<th>Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>.11 sec</td>
<td>1 megabyte</td>
</tr>
<tr>
<td>4</td>
<td>11 sec</td>
<td>106 megabytes</td>
</tr>
<tr>
<td>6</td>
<td>19 min</td>
<td>10 gigabytes</td>
</tr>
<tr>
<td>8</td>
<td>31 hours</td>
<td>1 terabyte</td>
</tr>
<tr>
<td>10</td>
<td>129 days</td>
<td>101 terabytes</td>
</tr>
<tr>
<td>12</td>
<td>35 years</td>
<td>10 petabytes</td>
</tr>
<tr>
<td>14</td>
<td>3523 years</td>
<td>1 exabyte</td>
</tr>
</tbody>
</table>

How can we ease up on **completeness** and **optimality** in the interest of improving time and space complexity?
Local search algorithms

• In many optimization problems, the path to the goal is irrelevant; the goal state itself is the solution

• In such cases, we can use local search algorithms

• keep a single “current” state, try to improve it
What is unique about local search?

• Many search problems only require finding a goal state, not the path to that goal state

• Examples
 • Actual physical (vs. virtual) navigation
 • Configuration problems — e.g., n-Queens problem, determining good compiler parameter settings
 • Design problems — e.g., VLSI layout or oil pipeline network design

• State space is set of configurations.
Example: n-queens

• Put n queens on an $n \times n$ board with no two queens on the same row, column, or diagonal
Optimization Problems

Aim is to find the best state according to an objective function.

No goal test
No path cost

cf. Evolution
Why use local search?

- Low memory requirements
 Usually constant

- Effective
 Can often find good solutions in extremely large state spaces
State-space landscape

- **Objective function**
- **Global maximum**
- **Shoulder**
- **Local maximum**
- **"Flat" local maximum**
- **Current state**
- **State space**
Hill-climbing search ("Steepest Ascent" version)

- Like “trying to find the top of Mount Everest in a thick fog while suffering from amnesia.”

```plaintext
function HILL-CLIMBING(problem) returns a state that is a local maximum
inputs: problem, a problem
local variables: current, a node
              neighbor, a node

current ← MAKE-NODE(INITIAL-STATE[problem])
loop do
    neighbor ← a highest-valued successor of current
    if VALUE[neighbor] ≤ VALUE[current] then return STATE[current]
current ← neighbor
```
Challenges for hill climbing

- **Local maxima**
 - Once a local maximum is reached, there is no way to backtrack or move out of that maximum

- **Ridges**
 - Ridges can produce a series of local maxima

- **Plateaux**
 - Hillclimbing can have difficult time finding its way off of a flat portion of the state space landscape
Hill-climbing search: 8-queens problem

Complete-state formulation

Actions: move a single queen to any other square in same column

- $h =$ number of pairs of queens that are attacking each other, either directly or indirectly
- $h = 17$ for the above state
Hill-climbing search: 8-queens problem

- A local minimum with $h = 1$
A state-space landscape

From: http://classes.yale.edu/fractals/CA/GA/Fitness/Fitness.html
Another state-space landscape

Variants of local hill climbing

• Stochastic hill climbing
 • Select randomly from all moves that improve the value of the evaluation function

• First-choice hill climbing
 • Generate successors randomly and select the first improvement

• Random-restart hill climbing
 • Conducts a series of hill-climbing searches, starting from random positions
 • Very frequently used general method in AI
Simulated annealing search

- Idea: escape local maxima by allowing some "bad" moves but gradually decrease their frequency

```python
function SIMULATED-ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem
         schedule, a mapping from time to "temperature"
local variables: current, a node
                 next, a node
                 T, a "temperature" controlling prob. of downward steps

current ← MAKE-NODE(INITIAL-STATE[problem])
for i ← 1 to ∞ do
    T ← schedule[i]
    if T = 0 then return current
    next ← a randomly selected successor of current
    ΔE ← VALUE[next] − VALUE[current]
    if ΔE > 0 then current ← next
    else current ← next only with probability e^{Δ E/T}
```
Properties of simulated annealing search

• One can prove: If T decreases slowly enough, then simulated annealing search will find a global optimum with probability approaching 1

• Widely used in VLSI layout, airline scheduling, etc.
Local beam search

- Analogy
 - Hill-climbing — “...trying to find the top of Mt. Everest in a thick fog while suffering amnesia.”
 - Local beam search — Doing this with several friends, each of whom has a short-range radio and an altimeter.
Local beam search

- Keep track of \(k \) states rather than just one
- Start with \(k \) randomly generated states
- At each iteration, all the successors of all \(k \) states are generated
- If any one is a goal state, stop; else select the \(k \) best successors from the complete list and repeat
- Stochastic beam search — Select successors at random weighted by value
Genetic algorithms

• A variant of stochastic beam search where new states are generated by combining existing states

• Basic components
 • Population — A set of states, initially generated randomly
 • Fitness function — An evaluation function
 • Reproduction — A method for generating new states from pairs of old ones (e.g., crossover)
 • Mutation — A method for randomly modifying states to create variation in the population
Genetic algorithms

- Fitness function: number of non-attacking pairs of queens (min = 0, max = $8 \times 7/2 = 28$)

- $24/(24+23+20+11) = 31\%$

- $23/(24+23+20+11) = 29\%$ etc
Genetic algorithms
Genetic Programming

- A specialization of genetic algorithms where each individual is a program

\[
(2.2 - \left(\frac{X}{11} \right)) + \left(7 \times \cos(Y) \right)
\]
GP Genetic Operators

- Subtree crossover

- Subtree mutation
Local Search in Continuous Spaces

- Spaces consisting of real-valued vectors
- Can discretize the space
- Gradient Ascent (descent)
- Line search
- Newton-Raphson
- Constrained optimization
 - Linear Programming
 - Convex optimization
Gradient Methods

Gradient methods compute

\[\nabla f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial y_1}, \frac{\partial f}{\partial x_2}, \frac{\partial f}{\partial y_2}, \frac{\partial f}{\partial x_3}, \frac{\partial f}{\partial y_3} \right) \]

to increase/reduce \(f \), e.g., by \(x \leftarrow x + \alpha \nabla f(x) \)

Sometimes can solve for \(\nabla f(x) = 0 \) exactly (e.g., with one city). Newton–Raphson (1664, 1690) iterates \(x \leftarrow x - H_f^{-1}(x) \nabla f(x) \) to solve \(\nabla f(x) = 0 \), where \(H_{ij} = \partial^2 f / \partial x_i \partial x_j \)
Gradient Descent
Gradient Descent: Rosenbrock Function
Gradient Descent
Newton Raphson

Newton-Iteration

Ralf Pfelfer für de.wikipedia.org Lizenz: GNU-FDL
Conjugate Gradient Method
Linear Programming
Convex Optimization

concave

convex

\[x_1 \quad x_2 \]

\[\text{epi } f(x) \]
Local Search

- In many optimization problems, the path to the goal is irrelevant; the goal state itself is the solution.

- In such cases, we can use local search algorithms.

- Keep a single “current” state, try to improve it.
Next Class

- Nondeterministic Actions and Partial Observations; Online Search
- Sec. 4.3, 4.4, 4.5