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1. Introduction
An important research goal for hierarchical reinforcement
learning is the development of methods by which an agent
can discover new skills autonomously, and thereby build its
own high-level skill hierarchies. Although several methods
exist for skill discovery in discrete domains, none are im-
mediately extensible to or have been successfully applied
in continuous domains.

We introduce skill chaining, a skill discovery method for
continuous domains. Skill chaining produces chains of
skills leading to a salient event—where salience can be
defined simply as an end-of-task reward, or as a more so-
phisticated heuristic (e.g., an intrinsically interesting event
(Singh et al., 2004)). The goal of each skill in the chain is
to reach a state where its successor skill can be executed.

2. Skill Discovery in Continuous Domains
Two difficulties that are present but less apparent in dis-
crete domains become more immediate in continuous do-
mains. First, all existing skill discovery methods identify
a single goal state as an option target, whereas in contin-
uous domains this must be generalized to a target region.
Second, while in discrete domains an option’s initiation set
may expand arbitrarily as the agent learns the option policy,
in continuous domains the policy must always be approxi-
mated and thus may be only locally applicable.

Since a useful option lies on the solution path, it seems in-
tuitively obvious that the first option we create should have
the aim of consistently reaching the goal. We can then learn
(using a supervised learning method) its initiation set us-
ing states from which it executes successfully as positive
examples and those from which it does not as negative ex-
amples. The high likelihood that its initiation set will be a
local neighbourhood around the goal suggests a follow-on
step: we could create an option whose goal is to reach a
state where the first option can be executed.

We term this method skill chaining, because repeating this
procedure results in a chain of skills leading from the start
state to the termination region, as depicted in Figure 1.
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Figure 1. An agent creates skills using skill chaining. First, the
agent encounters the goal and creates a skill to reach it (a). Enter-
ing the first skill then becomes a new subgoal, which later triggers
the creation of a second skill to reach the first (b). Finally, after
many trajectories the agent has created a chain of skills to reach
the goal (c).

This method can be easily generalized to multiple trajecto-
ries (skill trees, rather than chains), and to use more general
target events than the goal.

3. Empirical Evaluation
Our experiments use the Pinball domain,1 where an agent
must maneuver a ball into a whole through a domain with
several obstacles. The ball is dynamic, so its state is de-
scribed by four variables: x, y, ẋ and ẏ, and collisions
are fully elastic. The agent may add or subtract a small
force to ẋ or ẏ (which incurs a reward of −5 per action), or
leaving them unchanged (which incurs a reward of −1 per
timestep); reaching the goal obtains a reward of 10, 000.

The Pinball domain is an appropriate continuous domain
for skill discovery because its sharp discontinuities and ex-
tended dynamic control characteristics make it difficult for
control and for function approximation—much more diffi-
cult than a simple navigation task.

To learn to solve the overall task, we used Sarsa (α =
0.001, γ = 1, ε = 0.01) (Sutton & Barto, 1998) with a 4th-

1Java source code for the PinBall domain is available at
http://www-all.cs.umass.edu/˜gdk/pinball/
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order Fourier Basis (Konidaris & Osentoski, 2008). Each
learned option used Q-learning (α = 0.001, γ = 1, ε =
0.01) with a 3rd-order Fourier Basis. In both cases we var-
ied α systematically to maximize performance. Initiation
sets were learned by logistic regression.

Figure 2 shows the performance (averaged over 100 runs)
in the Pinball domain for agents using a random policy and
flat agents (who do not use any options) against agents em-
ploying skill chaining, and agents starting with pre-learned
options. The agents with pre-learned options acquired them
using skill chaining over 250 episodes of solving the Pin-
ball task, whereupon their task value functions were reset
and no new options could be acquired. The agents em-
ploying skill chaining perform significantly better than flat
agents, and that skills learned via skill chaining signifi-
cantly improve initial and final performance when given
to “blank slate” agents, demonstrating that it is the skills
themselves, rather than some byproduct of them, that is
responsible for the performance improvement. Figure 3
shows a sample solution trajectory for our PinBall domain,
with the options executed shown in different colors.
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Figure 2. Performance in the Pinball domain (averaged over 100
runs) for agents with a random policy, agents employing skill
chaining, agents with given options, and agents without options.

4. Summary and Discussion
The performance gains demonstrated in the previous sec-
tion show that skill chaining (at least using end-of-episode
salience) can significantly improve the performance of a re-
inforcement learning agent in a challenging continuous do-
main, by breaking the solution into subtasks and learning
lower-order option policies for each one.

An avenue that may lead to further performance benefits
would be to include a more sophisticated notion of salience:
any indicator function can be substituted for (or added to)
the end-of-episode one used in this paper. Skill chaining
can then be used augment the options discovered using
such a method, which we expect will still be low-range.

Figure 3. A good solution to the Pinball domain, showing the ac-
quired skills executed along the sample trajectory in different col-
ors. Primitive actions are shown in black.

The primary benefit of skill chaining is that it reduces the
representational burden of the overall value function and
achieve a better overall solution by allowing each option to
represent its own local policy. This implies that skill acqui-
sition is best suited to high-dimensional problems where a
single policy cannot be well represented using a feasible
number of basis functions in feasible time. In very com-
plex domains such as robotics, where the state space may
contain hundreds or even thousands of state variables, we
may require a more sophisticated approach that exploits the
idea that although the entire task may not be reducible to a
feasibly sized state space, it is often possible to split the
problem into subtasks that are. One such approach is ab-
straction selection (Konidaris & Barto, 2009), where the
agent has a set of possible abstractions (e.g., sets of related
features) from which it can select when creating a new op-
tion, based on an initial sample trajectory (as is obtained
the first time an agent reaches a salient event). We conjec-
ture that the ability of each option to use its own abstraction
will be a key benefit to hierarchical reinforcement learning
as we try to scale up to high-dimensional problems.
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