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Abstract

The core computational step in spectral learning — find-
ing the projection of a function onto the eigenspace of
a symmetric operator, such as a graph Laplacian — gen-
erally incurs a cubic computational complex@®(N?).

This paper describes the use of Lanczos eigenspace pro-
jections for accelerating spectral projections, which re-
duces the complexity t(D(nTOp + n°N) operations,
wheren is the number of distinct eigenvalues, dAgP

is the complexity of multiplyingI" by a vector. This
approach is based on diagonalizing the restriction of
the operator to th&rylov spacespanned by the op-
erator and a projected function. Even further savings
can be accrued by constructing an approximate Lanc-
zos tridiagonal representation of the Krylov-space re-
stricted operator. A key novelty of this paper is the use
of Krylov-subspace modulated Lanczos acceleration for
multi-resolution wavelet analysisA challenging prob-

eigenspaces of a symmetric operdfbform a basis for the
Krylov space spanned K¥ and f (e.g. see (Malsen, Orri-
son, and Rockmore 2003)). Furthermore, an efficiemtc-
zostype algorithm can be developed that uses the compact
tridiagonal representation of the operatar

Closest in spirit to this paper is the use of Lanczos-
related Krylov subspace techniques described in (Freitas e
al. 2006). However, a principal novelty of this paper is
the use of Krylov preconditioning to accelerate multiscale
waveletmethods on graphs (Coifman and Maggioni 2006).
In contrast to standard spectral methods, which project
onto 1-dimensional eigenspaces, wavelet methods combine
time (or space) and frequency irtime-frequencyr space-
frequencyatoms. Projections are carried out, not by diago-
nalization, but bydilation of the operator onto a band of fre-
guencies. Wavelet methods rely on compact multiscale basis
functions, instead of one-dimensional global eigenvector

lem of learning to control a robot arm is used to test the

This approach results in an intrinsically multi-resolatio
proposed approach.

analysis, decomposing the underlying vector space of func-
tions CN into a hierarchy of orthogonal spaces, where the
coarse spaces are spannedsbgling functionsand the or-
thogonal fine spaces are spannediayeletbases. The pa-
per compares the standard diffusion wavelet method with the
Krylov-subspace accelerated variant on a challenging-prob
lem of learning to control a robot arm (the Acrobot task).

Introduction

At its core, spectral learning involve a possibly costlyegig
vector computation: for example, fully diagonalizing thge o
erator T’ of size N x N incurs aO(N?*) computation. In
many applications, such a direct approach may be infeasible
For example, in clustering and semi-supervised learriihg,
is the number of training examples, and large datasets may
contain many hundreds of thousands of instances. In com-
puter graphicsN is the number of vertices in an objec3®
representation, anglD models can similarly have millions  such as th&-dimensional real Euclidean spake or theN-
of vertices. In Markov decision processé$,is the num- dimensional space over complex numb&rs The space of
ber of sampled states, and many MDPs generate huge stateN x N matrices oveR (C) is denoted ad/y(R) (My(C)).
spaces. The matrix representations of a symmetric operator are de-
Rather than directly project on the eigenspaces of a sym- noted by7’, so thatT’ € My(R) or T € My(C). T is as-
metric operator, this paper uses a highly compact tridiajon  sumed to be completely diagonalizable, witteigenvalues
representation of the operafby constructed by restrictingit  that are either real-valued or complex-valued. Eigen&lue
to theKrylov spacespanned by powers df and a function may of course have geometric multiplicity 1. Letn denote
f whose eigenspace projections are desired. A key techni- the number of distinct eigenvaluesdf with corresponding
cal result shows that the projections of a functjpon the eigenspaces denoted by. Any vectorc CN can be decom-
posed into a direct sum of components, each of which lies in
a distinct eigenspace @f;

Mathematical Preliminaries

Let V be a finite-dimensional vector space over some field,
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whered denotes the direct sum of eigenspaces. The projec- | Lanczos Iteration:(n,e,T)

tion of any functionf € CY can be written as: /I T: Symmetric real operator (e.g. graph Laplacizn
/I f: Function whose eigenspace projections are desired
f=h+fot+...+fa Il q1,...,qm: Orthonormal basis fok
Il L,,,: Lanczos representation @fw.r.t Krylov basis
where each individual eigenspace projectfore V;. Il § : Tolerance parameter

/I n: Number of desired eigenspace projections
Krylov Spaces

The jt" Krylov subspaceC; generated by a symmetric op- | 1. Initialization : 8o = 0,0 = 0,q1 = 7.
eratorT and a functionf is written as: 2. fori=1,2,...

Kj=(f,Tf,T*f,....T77'f) e v="Tq

o ai = (gi,v)

wherek; C CN. Note thatC; C K2 C ..., such that for e v=0v—fi_1gi-1 — Qig;
somem, K, = K1 = K. Thus, K is the T-invariant o forj=1toi
Krylov space generated b and f. The projections off — = (gimjt1,)
onto the eigenspaces Bfform a basis for the Krylov space = — quz-i -
K (Malsen, Orrison, and Rockmore 2003). " !
Theorem 1 If T € My(C) is diagonalizable, and has o IfBi>0
distinct eigenvalues, the non-trivial projectionsfobnto the - Q1= 2

Bi

eigenspaces df’ form a basis for the Krylov space gener- o elseqiii = 0.

ated byT" and f.

The coefficients in the eigenspace expansions'bf Figure 1: Pseudo-code for Lanczos iteration.
form aVandermondenatrix, which can be shown to be in-
vertible. Thus, eaclf; € K. However, it also follows that ] ]
eachT”* f can be written as a linear combination of tfie Theorem23 If the dimension of the Krylov spac€ =
Thus,K is also spanned by thg. (f.Tf,T%f,...)ism,then{qi,..., gy} is an orthonormal
basis forkKC, and L,,, is the restriction ofl" to the subspace
Theorem 2 The dimension of the Krylov spakegenerated IC with respect to this basis.

by T and f is equal to the number of distinct eigenspace
projections off. The eigenvectors of the restrictionbfto
K are scalar multiples of;.

The computational complexity of running the Lanczos it-
eration specified in Figure 1 is summarized in the following
result.

Thus, eigenspace projections fér can be done much
faster with respect to the Krylov subspalCe since the di-
mension of the Krylov subspaeecan be significantly less

Theorem 4 If T is a real symmetridN x N operator, andf
is any function (vector¥ CV, then the number of operations
required to carry outr iterations of the Lanczos algorithm

than N. To projectf onto an eigenvector of T' requires is given byO(nTOP + n?N)
computing the inner productg, = 4w, which would / ' .

) (wyu) ™ . HereTOP denotes the number of steps required to apply
take3N steps relative to the default unit vector basissdf, 7 tg any functionf. In most of the applications of spectral
but incur only a cost o8 with respect to the Krylov basis  methodsy is typically highly sparse, and consequerfigP
K. is never larger than the number of non-zero entries in the

) o ) matrix representation (i.e. usually linear).
Lanczos Eigenspace Projection Algorithm

A key algorithm is now presented, which represents the re- Lanczos Eigenspace PrOJeCt'O_n _ o
striction of a real symmetric operat@t with respect to the ~ The overall procedure for computing eigenspace projestion

Krylov subspaceC as a series of tridiagonahnczosmatri- using the Lanczos approach is summarized in Figure 2. Let
cesL;: function f € CY whosem < n eigenspace projections with

respect to an operatdr are desired. Lek,, be the Lanczos
a1 f tridiagonal matrix representation of the restrictionZofo
: the Krylov subspacé&. Let {q,..., ¢} be the orthonor-
Li=| A a mal basis for the Krylov spade.
Bi-1 The main computational savings resulting from the use
Bi-1 of the Lanczos eigenspace projection method described in
The coefficients are computed using the iterative Lanczos F9ure 2 is that the matrix diagonalized may be significantly
method shown in Figure 1, a variant of the classical Gram- S”.‘a}“e“Lm IS anm xm tridiagonal matrix, rather than the
Schmidt orthogonalization method. original N x N matrix.
The main use of the Lanczos matricksis summarized Theorem 5 If T'is anN x N matrix with n distinct eigen-
in the following result. values, andf is a non-zero vectog CY, then the projection



Lanczos Ei genspace Projection:(m,f,T)

/I m: Number of desired eigenspace projections

Il 'T: symmetric real operator

/I f: Function whose eigenspace projections are desired
Il Qn: N x m orthogonal matrix of Krylov basis vectous.

1. ComputeL,, and@,, using the algorithm described in Fig-

ure 1, terminating when @vector is produced.

. DiagonalizeL,,,, and denote the eigenvaluesas. . ., tm,
and corresponding eigenvectorsiass, . . . , tm.

. Compute the eigenspace projectigins= (f, u:)u; with re-
spect to the basig of K.

. Compute the eigenspace projectighs= Q. f; of f with
respect to the original unit vector basis.

Figure 2: Algorithm for Lanczos eigenspace projection.

of f onto the eigenspaces @f requires O(nTOP + n2N)
operations

Crucially, note that the number of desired projections
m < n, the maximum number of distinct eigenvalues. Con-
sequently, the core step of computing eigenvectors schles a
most cubically inm, rather than the much larg&t. In many
of the intended applications of spectral learning, thifedif
ence can result in significant savings in computational time
as will be illustrated in some experiments below.

Multiscale Wavelet Analysis

A principal novelty of this paper is the use of Krylov meth-
ods to accelerate multiscale wavelet analysis on graphs, in
particular using the framework afiffusion wavelet¢Coif-

man and Maggioni 2006). The wavelet approach replaces
diagonalization by dilation, uses compact basis functions
rather than “flat” global eigenvectors, yielding a multi-
resolution analysis. Diffusion wavelets generalize watvel
analysis to functions on manifolds and graphs. The input
to the algorithm is a “precision” parameter> 0, and a
weighted graph(G, E,W). The construction is based on
using the natural random walR = D~!'W on a graph and

its powers to “dilate”, or “diffuse” functions on the graph,
and then defining an associated coarse-graining of the graph
SymmetrizingP by conjugation, and taking powers gives:

H = DEPDE =3 (- AEOG0) )

i>0

where{\;} and{¢;} are the eigenvalues and eigenfunctions
of the Laplacian as above. Hence the eigenfunctiond ‘of
are agairt; and theith eigenvalue ig1 — \;)!. We assume
that H' is a sparse matrix, and that the spectruniidfhas
rapid decay.

A diffusion wavelet tree consist of orthogonal diffusion
scaling functionsp; that are smooth bump functions, with
some oscillations, at scale roughly (measured with re-
spect to geodesic distance, for sm@| and orthogonal
waveletsV; that are smooth localized oscillatory functions
at the same scale. The scaling functichs span a sub-
spacel/;, with the property that;; C V;, and the span of

Di f f usi onWavel et Tree (Ho, ®o, J, €):

/I Hy: symmetric operator represented on the orthogpnal
basisdq

Il @y : initial (e.g. unit vector) basis
I/l J : number of levels of the tree
I/l e: precision

for j from Oto Jdo,

1. Orthogonalize operator at level H; ~. Q;R;, with Q;
orthogonal.

2. Compute scaling function®; 11 «— Q; = HjRj‘1

3. Dilate the operato[rH(?j]Z;E ~je Hjt1 < R;R;}.

4. Compute sparse factorizatidn— ®;197., = Q}Rj,
with Q; orthogonal.

5. Compute the wavelet basés., — Q).

end

Figure 3: Pseudo-code for building a Diffusion Wavelet
Tree.

V;.1, Wj, is the orthogonal complement &F into V.
This is achieved by using the dyadic powéfs’ as “dila-
tions”, to create smoother and wider (always in a geodesic
sense) “bump” functions (which represent densities for the
symmetrized random walk aftéé steps), and orthogonal-
izing and downsampling appropriately to transform sets of
“bumps” into orthonormal scaling functions. The algorithm
is described in Figure 3.

Accelerating Diffusion Wavelets

The procedure for combining Krylov subspace methods with
multiscale diffusion wavelets is outlined in Figure 4. The

graph operator is first preconditioned using the Lanczos
method shown in Figure 1, converting it into a tridiagonal

Lanczos matrix. Then, the diffusion wavelet tree is con-

structed using the procedure described in Figure 3. Fi-
nally, the scaling functions and wavelets constructedgisin

the tridiagonal Lanczos matrix are then transformed back to
the original basis using the change of basis matjx.

Learning to Solve MDPs using
Krylov-subspace accelerated Wavelets

Solving a Markov requires approximating a real-valued
functionV™ . S — R. Representation policy iteratiofiRPI)

is a general framework to learning representation and con-
trol in MDPs (Mahadevan and Maggioni 2007), where basis
functions for projecting the value function are constrdcte
from spectral analysis of a graph. RPI approximates the
true action-value functio)™ (s, a) for a policy = using a

set of basis functiong(s, a) made up of the multiscale dif-
fusion scaling and wavelet basis functions constructeeas d
scribed above. Similar in spirit to the use of Krylov bases fo
Markov decison processes (Petrik 2007), the diffusion-oper

atorT = D=2 WD~z is tridiagonalized with respect to the



Kryl ov-Di f f usi onWavel et Tree (Ho, Qm):

Il Ho: symmetric tridiagonal Lanczos matrix, representing
T using the Krylov basis

1. Run the diffusion wavelet
on the tridiagonalized Lanczos
Di f f usi onVavel et Tree(Ho, Qm, J,¢):

2. Remap the Krylov-subspace restricted scaling functions
®; at levelj onto the original basisP; «— Q.. ;.

procedure
matr

3. Remap the Krylov-subspace restricted wavelet bases at
levelj: ¥; — Qm ;.
end

Figure 4: Krylov-accelerated procedure for building auiff
sion wavelet tree.

Krylov bases defined bj andT.

The Acrobot task (Sutton and Barto 1998) is a two-link
under-actuated robot that is an idealized model of a gymnast
swinging on a high bar. The only action available is a torque
on the second joint, discretized to one of three values {posi
tive, negative, and none). The reward-$ for all transitions
leading up to the goal state. The detailed equations of mo-
tion are given in (Sutton and Barto 1998). The state space
for the Acrobot isi-dimensional. Each state istguple rep-
resented by, 01, 62, 65). ; andf, represent the angle of
the first and second links to the vertical, respectively, amed
naturally in the rang€0, 27). 6; andf, represent the angu-
lar velocities of the two links. Notice that angles néare
actually very close to angles nezr due to the rotational
symmetry in the state space.

The time required to construct Krylov accelerated diffu-
sion wavelets with regular diffusion wavelets is shown in
Figure 5 (left plot). There is a very significant decrease in
running time using the Krylov-subspace restricted Lanczos
tridiagonal matrix. In this experiment, data was generated
doing random walks in the Acrobot domain, from an ini-
tial sample size 0100 to a final sample size af000 states.
The performance of regular diffusion wavelets with Krylov
accelerated wavelets is shown on the right plot. This exper-
iment was carried out using a modified form of RPI with
on-policy resampling. Specifically, additional samplesave
collected during each new training episode from the current
policy if it was the best-performing policy (in terms of the
overall performance measure of the number of steps), other-
wise a random policy was used. Note that the performance
of Krylov accelerated diffusion wavelets is slightly bette
than regular diffusion wavelets, suggesting that thereois n
loss in performance.

Figure 6 shows the dependence of the time required to
construct the wavelet tree for various valuesofAs ¢ de-
creases, the approximation quality increases and the &ize o
the Lanczos matrix grows. This figure also shows the extra
pre-processing time required in constructing the tridiedo
Lanczos matrix.

Krylov-accelerated vs. regular Diffusion Wavelets

Acrobot Task

~#—Standard Diffusion Wavelets
—&—K(ylov-Lanczos Diffusion Wavelets

0 Kryov-cccelerated Difusion Wavelets
—6— Regular Difuson Wavelets

=
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Running Time in Seconds
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Figure 5: Left: time required to construct regular vs. Keylo
accelerated diffusion wavelets on the Acrobot control task
right: the resulting performance with RPI on the Acrobot
task.
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Figure 6: Left: time to construct diffusion wavelet tree;
Right: Lanczos preprocessing time (both plots for various
values ofd. Note the difference in scale from Figure 5.
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