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Abstract

The core computational step in spectral learning – find-
ing the projection of a function onto the eigenspace of
a symmetric operator, such as a graph Laplacian – gen-
erally incurs a cubic computational complexityO(N3).
This paper describes the use of Lanczos eigenspace pro-
jections for accelerating spectral projections, which re-
duces the complexity toO(nTop + n2

N) operations,
wheren is the number of distinct eigenvalues, andTop

is the complexity of multiplyingT by a vector. This
approach is based on diagonalizing the restriction of
the operator to theKrylov spacespanned by the op-
erator and a projected function. Even further savings
can be accrued by constructing an approximate Lanc-
zos tridiagonal representation of the Krylov-space re-
stricted operator. A key novelty of this paper is the use
of Krylov-subspace modulated Lanczos acceleration for
multi-resolution wavelet analysis. A challenging prob-
lem of learning to control a robot arm is used to test the
proposed approach.

Introduction
At its core, spectral learning involve a possibly costly eigen-
vector computation: for example, fully diagonalizing the op-
eratorT of size N × N incurs aO(N3) computation. In
many applications, such a direct approach may be infeasible.
For example, in clustering and semi-supervised learning,N

is the number of training examples, and large datasets may
contain many hundreds of thousands of instances. In com-
puter graphics,N is the number of vertices in an object’s3D
representation, and3D models can similarly have millions
of vertices. In Markov decision processes,N is the num-
ber of sampled states, and many MDPs generate huge state
spaces.

Rather than directly project on the eigenspaces of a sym-
metric operator, this paper uses a highly compact tridiagonal
representation of the operatorT , constructed by restricting it
to theKrylov spacespanned by powers ofT and a function
f whose eigenspace projections are desired. A key techni-
cal result shows that the projections of a functionf on the
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eigenspaces of a symmetric operatorT form a basis for the
Krylov space spanned byT andf (e.g. see (Malsen, Orri-
son, and Rockmore 2003)). Furthermore, an efficientLanc-
zostype algorithm can be developed that uses the compact
tridiagonal representation of the operatorT .

Closest in spirit to this paper is the use of Lanczos-
related Krylov subspace techniques described in (Freitas et
al. 2006). However, a principal novelty of this paper is
the use of Krylov preconditioning to accelerate multiscale
waveletmethods on graphs (Coifman and Maggioni 2006).
In contrast to standard spectral methods, which project
onto1-dimensional eigenspaces, wavelet methods combine
time (or space) and frequency intotime-frequencyor space-
frequencyatoms. Projections are carried out, not by diago-
nalization, but bydilation of the operator onto a band of fre-
quencies. Wavelet methods rely on compact multiscale basis
functions, instead of one-dimensional global eigenvectors.
This approach results in an intrinsically multi-resolution
analysis, decomposing the underlying vector space of func-
tions C

N into a hierarchy of orthogonal spaces, where the
coarse spaces are spanned byscaling functionsand the or-
thogonal fine spaces are spanned bywaveletbases. The pa-
per compares the standard diffusion wavelet method with the
Krylov-subspace accelerated variant on a challenging prob-
lem of learning to control a robot arm (the Acrobot task).

Mathematical Preliminaries

Let V be a finite-dimensional vector space over some field,
such as theN-dimensional real Euclidean spaceR

N or theN-
dimensional space over complex numbersC

N. The space of
N × N matrices overR (C) is denoted asMN(R) (MN(C)).
The matrix representations of a symmetric operator are de-
noted byT , so thatT ∈ MN(R) or T ∈ MN(C). T is as-
sumed to be completely diagonalizable, withN eigenvalues
that are either real-valued or complex-valued. Eigenvalues
may of course have geometric multiplicity> 1. Letn denote
the number of distinct eigenvalues ofT , with corresponding
eigenspaces denoted byVi. Any vector∈ C

N can be decom-
posed into a direct sum of components, each of which lies in
a distinct eigenspace ofT :

C
N = V1 ⊕ V2 . . . ⊕ Vn



where⊕ denotes the direct sum of eigenspaces. The projec-
tion of any functionf ∈ C

N can be written as:

f = f1 + f2 + . . . + fn

where each individual eigenspace projectionfi ∈ Vi.

Krylov Spaces
The jth Krylov subspaceKj generated by a symmetric op-
eratorT and a functionf is written as:

Kj = 〈f, Tf, T 2f, . . . , T j−1f〉

whereKj ⊂ C
N. Note thatK1 ⊆ K2 ⊆ . . ., such that for

somem,Km = Km+1 = K. Thus,K is theT -invariant
Krylov space generated byT andf . The projections off
onto the eigenspaces ofT form a basis for the Krylov space
K (Malsen, Orrison, and Rockmore 2003).

Theorem 1 If T ∈ MN(C) is diagonalizable, and hasn
distinct eigenvalues, the non-trivial projections off onto the
eigenspaces ofT form a basis for the Krylov space gener-
ated byT andf .

The coefficients in the eigenspace expansions ofT kf
form aVandermondematrix, which can be shown to be in-
vertible. Thus, eachfi ∈ K. However, it also follows that
eachT kf can be written as a linear combination of thefi.
Thus,K is also spanned by thefi.

Theorem 2 The dimension of the Krylov spaceK generated
by T and f is equal to the number of distinct eigenspace
projections off . The eigenvectors of the restriction ofT to
K are scalar multiples offi.

Thus, eigenspace projections forT can be done much
faster with respect to the Krylov subspaceK, since the di-
mension of the Krylov subspacen can be significantly less
thanN . To projectf onto an eigenvectoru of T requires
computing the inner productsfu = 〈f,u〉

〈u,u〉u, which would

take3N steps relative to the default unit vector basis ofC
N,

but incur only a cost of3n with respect to the Krylov basis
K.

Lanczos Eigenspace Projection Algorithm
A key algorithm is now presented, which represents the re-
striction of a real symmetric operatorT with respect to the
Krylov subspaceK as a series of tridiagonalLanczosmatri-
cesLj :

Lj =









α1 β1

β1 α2

...
. . . . . . βj−1

βj−1 αj









The coefficients are computed using the iterative Lanczos
method shown in Figure 1, a variant of the classical Gram-
Schmidt orthogonalization method.

The main use of the Lanczos matricesLj is summarized
in the following result.

Lanczos Iteration:(n, ǫ, T )
// T : Symmetric real operator (e.g. graph LaplacianL)
// f : Function whose eigenspace projections are desired
// q1, . . . , qm: Orthonormal basis forK
// Lm: Lanczos representation ofT w.r.t Krylov basis
// δ : Tolerance parameter
// n: Number of desired eigenspace projections

1. Initialization : β0 = 0, q0 = 0, q1 = f

‖f‖
.

2. for i = 1, 2, . . .

• v = Tqi

• αi = 〈qi, v〉

• v = v − βi−1qi−1 − αiqi

• for j = 1 to i

– γ = 〈qi−j+1, v〉
– v = v − γqi−j+1

• βi = ‖v‖

• If βi > δ

– qi+1 = v
βi

• elseqi+1 = 0.

Figure 1: Pseudo-code for Lanczos iteration.

Theorem 3 If the dimension of the Krylov spaceK =
〈f, Tf, T 2f, . . .〉 is m, then{q1, . . . , qm} is an orthonormal
basis forK, andLm is the restriction ofT to the subspace
K with respect to this basis.

The computational complexity of running the Lanczos it-
eration specified in Figure 1 is summarized in the following
result.

Theorem 4 If T is a real symmetricN × N operator, andf
is any function (vector)∈ C

N, then the number of operations
required to carry outn iterations of the Lanczos algorithm
is given byO(nTop + n2

N).

HereTop denotes the number of steps required to apply
T to any functionf . In most of the applications of spectral
methods,T is typically highly sparse, and consequentlyTop

is never larger than the number of non-zero entries in the
matrix representation (i.e. usually linear inN).

Lanczos Eigenspace Projection
The overall procedure for computing eigenspace projections
using the Lanczos approach is summarized in Figure 2. Let
functionf ∈ C

N whosem ≤ n eigenspace projections with
respect to an operatorT are desired. LetLm be the Lanczos
tridiagonal matrix representation of the restriction ofT to
the Krylov subspaceK. Let {q1, . . . , qm} be the orthonor-
mal basis for the Krylov spaceK.

The main computational savings resulting from the use
of the Lanczos eigenspace projection method described in
Figure 2 is that the matrix diagonalized may be significantly
smaller:Lm is anm×m tridiagonal matrix, rather than the
originalN × N matrix.

Theorem 5 If T is anN × N matrix withn distinct eigen-
values, andf is a non-zero vector∈ C

N, then the projection



Lanczos Eigenspace Projection:(m, f, T )
// m: Number of desired eigenspace projections
// T : symmetric real operator
// f : Function whose eigenspace projections are desired
// Qm: N×m orthogonal matrix of Krylov basis vectorsqi.

1. ComputeLm andQm using the algorithm described in Fig-
ure 1, terminating when a0 vector is produced.

2. DiagonalizeLm, and denote the eigenvalues asµ1, . . . , µm,
and corresponding eigenvectors asũ1, ũ2, . . . , ũm.

3. Compute the eigenspace projectionsf̃i = 〈f, ũi〉ũi with re-
spect to the basisqi of K.

4. Compute the eigenspace projectionsfi = Qmf̃i of f with
respect to the original unit vector basis.

Figure 2: Algorithm for Lanczos eigenspace projection.

of f onto the eigenspaces ofT requiresO(nTop + n2
N)

operations

Crucially, note that the number of desired projections
m ≤ n, the maximum number of distinct eigenvalues. Con-
sequently, the core step of computing eigenvectors scales at
most cubically inm, rather than the much largerN. In many
of the intended applications of spectral learning, this differ-
ence can result in significant savings in computational time,
as will be illustrated in some experiments below.

Multiscale Wavelet Analysis
A principal novelty of this paper is the use of Krylov meth-
ods to accelerate multiscale wavelet analysis on graphs, in
particular using the framework ofdiffusion wavelets(Coif-
man and Maggioni 2006). The wavelet approach replaces
diagonalization by dilation, uses compact basis functions
rather than “flat” global eigenvectors, yielding a multi-
resolution analysis. Diffusion wavelets generalize wavelet
analysis to functions on manifolds and graphs. The input
to the algorithm is a “precision” parameterε > 0, and a
weighted graph(G,E,W ). The construction is based on
using the natural random walkP = D−1W on a graph and
its powers to “dilate”, or “diffuse” functions on the graph,
and then defining an associated coarse-graining of the graph.
SymmetrizingP by conjugation, and taking powers gives:

Ht = D
1
2 P tD− 1

2 =
∑

i≥0

(1 − λi)
tξi(·)ξi(·) (1)

where{λi} and{ξi} are the eigenvalues and eigenfunctions
of the Laplacian as above. Hence the eigenfunctions ofHt

are againξi and theith eigenvalue is(1 − λi)
t. We assume

thatH1 is a sparse matrix, and that the spectrum ofH1 has
rapid decay.

A diffusion wavelet tree consist of orthogonal diffusion
scaling functionsΦj that are smooth bump functions, with
some oscillations, at scale roughly2j (measured with re-
spect to geodesic distance, for smallj), and orthogonal
waveletsΨj that are smooth localized oscillatory functions
at the same scale. The scaling functionsΦj span a sub-
spaceVj , with the property thatVj+1 ⊆ Vj , and the span of

DiffusionWaveletTree (H0, Φ0, J, ε):

// H0: symmetric operator represented on the orthogonal
basisΦ0

// Φ0 : initial (e.g. unit vector) basis
// J : number of levels of the tree
// ε: precision

for j from 0 to J do,

1. Orthogonalize operator at levelj: Hj ∼ε QjRj , with Qj

orthogonal.

2. Compute scaling functions:Φj+1 ← Qj = HjR
−1

j

3. Dilate the operator[H2
j

0 ]
Φj+1

Φj+1
∼jε Hj+1 ← RjR

∗
j .

4. Compute sparse factorizationI − Φj+1Φ
∗
j+1 = Q′

jR
′
j ,

with Q′
j orthogonal.

5. Compute the wavelet basesΨj+1 ← Q′
j .

end

Figure 3: Pseudo-code for building a Diffusion Wavelet
Tree.

Ψj+1, Wj , is the orthogonal complement ofVj into Vj+1.
This is achieved by using the dyadic powersH2

j

as “dila-
tions”, to create smoother and wider (always in a geodesic
sense) “bump” functions (which represent densities for the
symmetrized random walk after2j steps), and orthogonal-
izing and downsampling appropriately to transform sets of
“bumps” into orthonormal scaling functions. The algorithm
is described in Figure 3.

Accelerating Diffusion Wavelets
The procedure for combining Krylov subspace methods with
multiscale diffusion wavelets is outlined in Figure 4. The
graph operator is first preconditioned using the Lanczos
method shown in Figure 1, converting it into a tridiagonal
Lanczos matrix. Then, the diffusion wavelet tree is con-
structed using the procedure described in Figure 3. Fi-
nally, the scaling functions and wavelets constructed using
the tridiagonal Lanczos matrix are then transformed back to
the original basis using the change of basis matrixQm.

Learning to Solve MDPs using
Krylov-subspace accelerated Wavelets

Solving a Markov requires approximating a real-valued
functionV π : S → R. Representation policy iteration(RPI)
is a general framework to learning representation and con-
trol in MDPs (Mahadevan and Maggioni 2007), where basis
functions for projecting the value function are constructed
from spectral analysis of a graph. RPI approximates the
true action-value functionQπ(s, a) for a policy π using a
set of basis functionsφ(s, a) made up of the multiscale dif-
fusion scaling and wavelet basis functions constructed as de-
scribed above. Similar in spirit to the use of Krylov bases for
Markov decison processes (Petrik 2007), the diffusion oper-
atorT = D− 1

2 WD− 1
2 is tridiagonalized with respect to the



Krylov-DiffusionWaveletTree (H̃0, Qm):

// H̃0: symmetric tridiagonal Lanczos matrix, representing
T using the Krylov basis

1. Run the diffusion wavelet procedure
on the tridiagonalized Lanczos matrix:
DiffusionWaveletTree(H̃0, Qm, J, ε):

2. Remap the Krylov-subspace restricted scaling functions
Φ̃j at levelj onto the original basis:Φj ← QmΦ̃j .

3. Remap the Krylov-subspace restricted wavelet bases at
level j: Ψ̃j ← QmΨj .

end

Figure 4: Krylov-accelerated procedure for building a diffu-
sion wavelet tree.

Krylov bases defined byR andT .
The Acrobot task (Sutton and Barto 1998) is a two-link

under-actuated robot that is an idealized model of a gymnast
swinging on a high bar. The only action available is a torque
on the second joint, discretized to one of three values (posi-
tive, negative, and none). The reward is−1 for all transitions
leading up to the goal state. The detailed equations of mo-
tion are given in (Sutton and Barto 1998). The state space
for the Acrobot is4-dimensional. Each state is a4-tuple rep-
resented by(θ1, θ̇1, θ2, θ̇2). θ1 andθ2 represent the angle of
the first and second links to the vertical, respectively, andare
naturally in the range(0, 2π). θ̇1 andθ̇2 represent the angu-
lar velocities of the two links. Notice that angles near0 are
actually very close to angles near2π due to the rotational
symmetry in the state space.

The time required to construct Krylov accelerated diffu-
sion wavelets with regular diffusion wavelets is shown in
Figure 5 (left plot). There is a very significant decrease in
running time using the Krylov-subspace restricted Lanczos
tridiagonal matrix. In this experiment, data was generated
doing random walks in the Acrobot domain, from an ini-
tial sample size of100 to a final sample size of1000 states.
The performance of regular diffusion wavelets with Krylov
accelerated wavelets is shown on the right plot. This exper-
iment was carried out using a modified form of RPI with
on-policy resampling. Specifically, additional samples were
collected during each new training episode from the current
policy if it was the best-performing policy (in terms of the
overall performance measure of the number of steps), other-
wise a random policy was used. Note that the performance
of Krylov accelerated diffusion wavelets is slightly better
than regular diffusion wavelets, suggesting that there is no
loss in performance.

Figure 6 shows the dependence of the time required to
construct the wavelet tree for various values ofδ. As δ de-
creases, the approximation quality increases and the size of
the Lanczos matrix grows. This figure also shows the extra
pre-processing time required in constructing the tridiagonal
Lanczos matrix.
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Figure 5: Left: time required to construct regular vs. Krylov
accelerated diffusion wavelets on the Acrobot control task;
right: the resulting performance with RPI on the Acrobot
task.
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Figure 6: Left: time to construct diffusion wavelet tree;
Right: Lanczos preprocessing time (both plots for various
values ofδ. Note the difference in scale from Figure 5.
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