Learning State-Action Basis Functions for Hierarchical MDPs

Sarah Osentoski
Sridhar Mahadevan

SOSENTOS @CS.UMASS.EDU
MAHADEVA @CS.UMASS.EDU

University of Massachusetts Amherst, 140 Governor’s Drive, Amherst, MA 01002

Reinforcement Learning, Semi-Markov Decision Processes, Basis Function Learning, Manifold Learning

Abstract

This paper introduces a new approach to action-
value function approximation by learning basis
functions from a spectral decomposition of the
state-action manifold. This paper extends pre-
vious work on using Laplacian bases for value
function approximation by using the actions of
the agent as part of the representation when
creating basis functions. The approach results
in a nonlinear learned representation particu-
larly suited to approximating action-value func-
tions, without incurring the wasteful duplication
of state bases in previous work. We discuss
two techniques to create state-action graphs: off-
policy and on-policy. We show that these graphs
have a greater expressive power and have bet-
ter performance over state-based Laplacian basis
functions in domains modeled as Semi-Markov
Decision Processes (SMDPs). We present a sim-
ple graph partitioning method to scale the ap-
proach to large discrete MDPs.

1. Introduction

Recent work has focused on automatic basis construction
for approximating value functions in Reinforcement
Learning (Mahadevan, 2005; Keller et al., 2006; Smart,
2004). These techniques are designed to help solve large
MDPs by constructing basis functions for value function
approximation that compactly represent the topology of the
state space. However, it is often desirable to approximate
the action value function, Q)(s,a), rather than the state
value function, V(s). Approximating @ requires basis
functions that are defined over state action pairs; previous
approaches use techniques such as copying to transform
their basis functions, defined over states, to basis functions

Appearing in Proceedings of the 24" International Conference
on Machine Learning, Corvallis, OR, 2007. Copyright 2007 by
the author(s)/owner(s).

that may be used to approximate (). In this paper we
propose incorporating actions into the embedding by
creating representations in state-action space.

We specifically build upon the approach of using the
graph Laplacian for constructing basis functions (Mahade-
van, 2005). This is appealing since the basis functions are
automatically constructed from the agent’s experience in
the domain. The approach consists of three steps: forming
a graph where states are vertices and edges represent
transitions to adjacent states, calculating the Laplacian of
the graph, and computing the k& smoothest eigenvectors
of the Laplacian. In order to create basis functions over
state-action pairs the eigenvectors of the state space graph
Laplacian are copied for every action, zeroing out the bits
corresponding to actions that were not performed.

The previous approach treats all actions as if they are
equivalent, which is often not the case. Instead we create
a graph in which the vertices are state action pairs, thus
the resulting eigenvectors are already defined over state
action pairs. The embeddings of this graph are in a
different space: the similarity between state action pairs is
dependent upon the actions that the agent takes in a state.
States can now be differentiated; some actions in a state
are more similar than others. Our technique is also capable
of capturing smoothness in state-action space. This will
not necessarily happen by copying basis function created
in state space.

Our approach also benefits from the fact that it does
not require copying because less basis functions are
created. This is especially important in domains where
the number of actions available in each state varies sig-
nificantly; the eigenvector for a state must be copied for
all possible actions, even those not available in the state.
Embeddings created using these graphs are also able to
differentiate between actions when several actions with
different costs or durations lead from state s to state s’.
In state graphs these differences cannot be modeled and

Learning State-Action Basis Functions for Hierarchical MDPs

would be averaged or totally ignored.

Although state-action graphs provide significantly
greater expressive power over state space graphs, they
come at a price of potentially greater computational
overhead. State-action graphs are significantly larger than
their counterparts, and are also directed: this makes their
construction and spectral analysis more intricate. We
explore these tradeoffs in domains modeled as SMDPs.
We select SMDPs for the following reasons: actions in
these domains will vary greatly and the number of actions
available in each state often varies.

2. SMDPs and SMDP Q-learning

We first briefly review Markov decision processes (MDPs).
An MDP is defined as M = (S, A, P%,, R%,,). S is the
set of states, A is the set of actions, P2, is the transition
model, specifiying the probability of transitioning from
state s to s’ when action a is used, and R¢, is the reward
model. Semi-Markov Decision Processes (SMDPs) differ
from MDPs in that actions are no longer assumed to take a

single time step and may have varied durations.

We use the option framework (Sutton et al., 1999) to
model these temporally extended actions. An option o
is defined as tuple < I,m,(3 > where [is the initiation
set which contains the states where the option may be
initiated, 7 is the option policy which determines how the
option will select actions or other options for execution,
and [is the termination condition which gives the proba-
bility of option termination after each action in the world.
The optimal option value function Q*(s,0) satisfies the
Bellman equation

Q*(s,0) =17+ Z P2, max Q*(s',0")
s’ :

where 7¢ = E{ri 1 +y7ri12+ ... + Y5 g |E(0, 8, 1)}
~ is the discount factor, ¢ + K is the time at which o
terminates, and & (o, s, t) is the event of o being initiated in
state s at time ¢.

We approximate @ as Q™ (s,olw) = 25:1 ®i(s, 0)w,
where @ is a matrix with |S| x |A| rows and & columns,
each column storing a basis function ¢;, and w; are the
weights.In order to learn Q we use SMDP Q())-learning
(Precup et al., 2000). This method uses an e-greedy policy
for action selection and accumulating eligibility traces.
Traces are set to zero when a random action is taken. The
update rule for the weights is given as

Wit Kk = Wi + 004 K€y K

where

Oty Kk = T4k + ’7t+K max Qi(Se+x,0) — Qi(st,0¢),
0€0s, | g

e=~"ENe Kk + V@Qt(st, o), and €y = 0.

3. Directed Graph Laplacian

State-action graphs are inherently directed, and require a
different graph Laplacian operator from undirected graphs.
In this section we give a brief summary of spectral decom-
position of the Laplacian on directed graphs; a more in
depth analysis can be found in (Chung, 2005; Johns & Ma-
hadevan, 2007). We first review the spectral decomposition
of the Laplacian on undirected graphs (Chung, 1997). A
weighted undirected graph is defined as G, = (V, E,,, W)
where V is set of vertices, F, is the of set edges, and W
is the set of weights w;; for each edge (i,7) € E,. If
an edge does not exist between two vertices it is given a
weight of 0. The valency matrix, D, is a diagonal matrix
whose values are the row sums of W. The combinatorial
Laplacian is defined as L, = D — W and the normalized
Laplacian is defined as %, = D=2 (D — W)D~ 2.

A weighted directed graph is defined as G4 = (V, Eq4, W).
The major distinction between the directed and undirected
graph is the non-reversibility of edges. A directed graph
may have weights w;; = 0 and w;; # 0. This is not
possible in an undirected graph. This difference is the key
reason that directed graphs are preferable for encoding
policy graphs. In order to define the graph Laplacians
on G4 we must first introduce the Perron vector, 1. A
random walk on G4 defines a probability transition matrix
P = D~ 'W. The Perron-Frobenius Theorem states
that if G4 is strongly connected then P has a unique left
eigenvector 1) with all positive entries such that ¢y P = pi)
where p is the spectral radius. p can be set to 1 by
normalizing v such that), ¢; = 1. A more intuitive way
of thinking of v is as the long-term steady state probability
of being in any vertex over a long random walk on the
graph.

There is no closed-form solution for t; however,
there are several algorithms to calculate it. The power
method (Golub & Loan, 1989), is an approach to itera-
tively calculate v that starts with an initial guess for 1,
uses the definition)P = 1) to determine a new estimate
and iterates. Another technique is the Grassman-Taksar-
Heyman (GTH) algorithm. This technique uses a Gaussian
elimination procedure designed to be numerically stable.
The naive GTH implementation runs in O(n?), but this can
be improved in O(nm?) if P is sparse. Other techniques,
such as Perron complementation (Meyer, 1989), have been

Learning State-Action Basis Functions for Hierarchical MDPs

introduced to speed up convergence.

The graph Laplacians for the directed graph are de-
fined as (Chung, 2005)

VP 4+ PTY
\Ill/QP\I’_l/Q lIl_l/QPTllll/Q
Ly=1— *

2

where U is a diagonal matrix with entry ¥,; = ;. To
find basis functions on directed state-action graphs, we
compute the k smoothest eigenvectors of L, or .Z.
These eigenvectors form ® and can be used in a learning
algorithm as described in Section 2. A description of
the effects of using Ly and %, as state basis functions
for solving MDPs can be found in (Johns & Mahadevan,
2007).

The directed Laplacian requires a strongly connected
graph, however graphs created from an agent’s experience
may not have this property. In order to ensure that this
property exists we use a teleporting random walk (Page
et al., 1998). With probability 1 the agent acts according to
the transition matrix P and with probability 1 — 7 teleports
to any other vertex in the graph uniformly at random. This
assumption is not built into the domain and is only used
for the purpose of creating ¢ and performing the spectral
decomposition.

4. Manifold Construction

Table 1 presents different ways of creating the weight ma-
trix W for state and state-action graphs. We explain below
why these weightings were chosen. W (4, j) is the weight
for the transition between state ¢ and state j. W (x,y) is
the weight in the state-option graph where z is the vertex
corresponding to state ¢ and one of its available options and
y is the vertex for state j and one of its available options.
time(i, j) is the average duration of the option transition-
ing from state 7 to state j. count (%) is the number of times
state ¢ is observed in the samples and count(i,j) is the
number of times the transition from state ¢ to state j is ob-
served. The weight matrix W is also designed to take the
duration of the temporally extended actions of the SMDP
into account by weighting each option edge by the inverse
of the option’s average duration. We use the inverse be-
cause the Laplacian treats 11/ as a similarity matrix rather
than a distance matrix.

W(y,Z) _ 1 count(i,5)

’ State-option graph Time(ig) _count(i)
W(i,j) =

’ State graph

time(,7)

Table 1. Weightings Used for SMDP Graphs.

4.1. Off-Policy vs. On-Policy Graph Construction

Two techniques, shown in Figure 1, may be used to cre-
ate state-action graphs. The first, on-policy graph creation,
connects (s,a) to (s',a’) if the agent is in state s, takes
action a, transitions to state s’ and then selects action a’.
The second, off-policy graph creation, connects (s,a) to
(s',a’) if the agent is in state s, takes action a, transi-
tions to s’ and ' € A, where A, is the set of actions
available in state s’. Self loops are not included in either
type of graph creation. On-policy graph creation can be
used to model the current policy that the agent is perform-
ing while the off-policy graph will encode the underlying
MDP. When the agent is executing a random walk the two
techniques will converge to the same graph however, the
off-policy method requires less exploration to construct the
graph. State-action graphs can be significantly impacted

@
e
@

(b) Off-policy graph
creation adds edges
for all actions avail-
able in state s’

(a) On-policy graph cre-
ation only adds a single
edge based on the exact ex-
perience of the agent.

Figure 1. Two techniques for creating state-action graphs.

when the environment is stochastic. If this is not corrected
unlikely transitions will have similar weights as likely tran-
sitions. In order to compensate for this, as shown in Ta-
ble 1, we keep track of the frequency of transitions during
the exploration period and then multiply the edge weight
by this number. While state-action graphs can more accu-
rately model the environment they add complexity due to
the fact that they have directed edges and have an increased
number of vertices. Constructing state-action graphs based
on a random walk can be inefficient. We used off-policy
graph creation to reduce the number of samples needed to
create the graph. We also modified the random walk so that
the agent selected the action that has been least frequently
used in a given state.

5. Domain and Experiments
5.1. Four Room Grid World

In order to illustrate our technique we used a four room
gridworld shown in Figure 2 (Sutton et al., 1999) This
domain consists of 169 states of which 104 are free states

Learning State-Action Basis Functions for Hierarchical MDPs

(states that are not a wall). In any free state the agent can
perform one of four primitive actions: north, south, east
or west. There is a 10% probability that an action will fail
and the agent will remain in the same location. If the agent
moves into a wall it remains in the same location. Rewards
are zero on all state transitions except transitions into the
goal state when the agent receives a reward of 100. Two

Figure 2. Four room gridworld.

hallway options are provided in each of four rooms. These
options allow the agent to navigate from any location
within one room to one of the two hallway states that lead
out of that room. The initiation set, I, is comprised of all
the states within the room. A hallway option’s policy is
optimal and cannot be terminated once selected until it
reaches the goal state. Hallway states do not have hallway
options available to them and are not in the initiation set of
any of the hallway options.

We consider a learning problem in this domain. The
agent must use the 8 multi-step hallway options and
primitive actions to learn to reach the goal. We first
allow the agent to explore the environment selecting from
primitive actions and available options randomly. We used
2000 episodes with 50 steps per episode. We perform this
exploration only once. The agent then builds the graph
from these samples and computes the basis functions. We
use SMDP Q(\)-learning(v = .9,¢ = .1,a = .01) as
described in Section 2 to learn a policy that maximizes the
agent’s long-term reward. The agent starts in a random
state at the beginning of each learning episode and the
agent was allowed to select actions as long as the number
of steps was less than 50 in a learning iteration (the agent
may take slightly more than 50 steps if at timestep 49
it selected an option). The Q-function was initially set
such that all values were zero. We then performed an
initial learning step on the random samples to initialize the
policy before performing SMDP Q(\)-learning. The initial
learning iteration did not prove to be very useful since
the agent often spends much of its time wandering in one
portion of the state space. Random actions only allow for
a one-step backup since we are using Watkin’s () and
traces are cut off every time an exploratory action is taken.

In order to illustrate the structure of the graphs cre-
ated in this domain we use a smaller domain in which
the upper left room has only 9 states. The domain is
exactly identical to the four room gridworld except that
it is smaller. We show the graphs for only the upper left
room. Figure 3(a) shows the state graph where the agent
can only execute primitive actions. Figure 3(b) illustrates
the case when the agent has access to options. The options
introduce long edges going from each state to states 7 and
11. Figure 4 shows the state-action graph when the agent

(a) State graph showing transitions
when the agent has only primitive ac-
tions.

(b) State graph showing transitions when the agent
also has access to hallway options.

Figure 3. The state graphs created for the upper left hand room in
a smaller version of the four room gridworld.

can only execute primitive actions. Figure 4(a) shows the
global topology of the graph. This graph is similar to the
topology of the state graph. However, each node in this
figure represents the 4 state-action pairs for each state.
Figure 4(b) shows the state-action pairs specifically for
state 1. Figure 5 shows the state-action pairs for state 1
when the agent has access to the hallway options. Two
nodes are added to represent the new state-action pairs.
Transitions from these nodes will lead to the 4 state-action
nodes of the hallway states associated with the transition.

Figure 6 shows the vertices of the graphs of the full
domain using the second and third eigenvectors as co-

Learning State-Action Basis Functions for Hierarchical MDPs

(a) State-action graph showing tran-
sitions when the agent has only prim-
itive actions.

/o

(b) Close up of transitions asso-

ordinates. The agent had access to the hallway options
for these graphs. These figures show that the technique
is grouping the graphs into four clusters corresponding
to the four rooms. The tip of each of these groups is the
corners of the domain. While Figure 6(c) appears to be
the one outlier, the center of the graph has a shape similar
to Figure 6(a). Figure 7 provides a zoomed in view of the
vertices of the graph for the states in the upper right-hand
corner of the domain as seen in Figure 7(a). Figure 7(b)
shows the embedding of the states while Figure 7(c) shows
the embedding of the state-action pairs. The areas zoomed
in on are indicated by circles in Figure 6. As can be seen
in Figure 7(c) action 1 (North) and 2 (East) are located
on the same point. This is a desirable result as state 25
is located at the top right corner of the grid and both
actions will transition back to state 25. State-action pairs
that have similar transitions are also placed near to each
other, (25,3(South)), (38,1) and (25,4(West)), (24,2), are
examples of this. This proximity in the embedding space
is highly desirable as it yields good generalization across
state-action space.

ciated with nodes for state-action

pairs for state 1.

Figure 4. The state-action graphs created for a small room.

(a) The embedding of
the combinatorial Lapla-
cian of the state graph

o N
d ‘_....‘.M—-<
w 4

;!

(c) The embedding of the
combinatorial Laplacian
of the state-action graph.

(b) The embedding of the
normalized Laplacian of
the state graph.

(d) The embedding of the
normalized Laplacian of
the state graph.

Figure 5. Transitions associated with nodes for the state-action
pairs for state 1 when the doorway options are available.

Figure 6. The embeddings of the graph Laplacians using the sec-
ond and third eigenvectors for the four room gridworld domain
when options are available to the agent.

5.2. Eight Room Gridworld

We also ran experiments on an eight room gridworld
shown in Figure 8. This domain consists of 325 states of
which 210 are free states. In any free state the agent can
perform one of four primitive actions: north, south, east
or west. There is a 10% probability that an action will
fail and the agent will remain in the same location. If the

Learning State-Action Basis Functions for Hierarchical MDPs

38

(a) The right hand
corner of the four
room gridworld
with the corner
states labeled.

(b) The embedding of the combinatorial
Laplacian on the state graph.

25,3 24,2
38,1 25,4

-006F 25,2
251

-0.07!
~038 -036 -034 -032 -03 -028 -026 -024 -022 02

(c) The embedding of the combinatorial
Laplacian on the state-action graph.

Figure 7. A closer look at the embeddings of the combinatorial
graph Laplacian

agent moves into a wall it remains in the same location.
Rewards are zero on all state transitions except transitions
into the goal state when the agent receives a reward of 100.
Hallway options are provided in each of four rooms. These

Figure 8. Eight room gridworld.

options allow the agent to navigate from any location
within one room to one of the hallway states that lead
out of that room. Rooms adjacent to 3 doorways have 3
hallway options and rooms adjacent to 2 doorways have
2 hallway options. The initiation set, I, is comprised of
all the states within the room. A hallway option’s policy
is optimal and cannot be terminated once selected until it
reaches the goal state. Hallway states do not have hallway
options available to them.

The learning problem in this domain is that the agent
must use the 20 multi-step hallway options and primitive
actions to learn to reach the goal. We first allow the agent
to explore the environment selecting from primitive actions
and available options randomly. We used 4000 episodes
with 50 steps per episode. We perform this exploration
only once. The agent then builds the graph from these
samples and computes the basis functions. We use SMDP
Q(A)-learning(v = .9,¢ = .1,a = .01). The agent is
allowed 100 steps per learning episode and the Q-function
is initialized to zero.

6. Results

We performed experiments to compare the two graph
Laplacians on both state and state-action graphs. In these
experiments we systematically varied the number of basis
functions used in function approximation. In experiments
using state graphs we varied the number of basis functions
from 24 to 120 in steps of 12 and from 144 to 1200 in
steps of 24. In experiments using state-action graphs we
varied the number of basis functions from 3 to 10 in one
step increments and from 20 to 600 in increments of 10.
The results of each experiment was averaged over 200
trials and each experiment was performed for 300 learning
iterations.

Figure 9 compares the number of steps taken by the
agent to reach the goal when using the two types of graph
Laplacians on both state and state-action graphs. The
performance of the normalized and combinatorial graph
Laplacians was similar on both the state and state-option
graphs, thus we plot only results using the normalized
Laplacian. The best performance was in experiments using
the state-option graphs with 260 basis functions (out of
616 possible basis functions). A similar number of basis
functions created from the graph Laplacians of state graphs
does not yield similar performance. Instead performance
using about 264 basis functions created from the state
graph was similar to performing table lookup. Using more
basis functions did not improve performance noticeably.
All techniques using options outperformed experiments
where the agent had access only to primitive actions.

Learning State-Action Basis Functions for Hierarchical MDPs

Basis functions created from state-action graphs per-
formed the best; we were not able to achieve similar
performance with basis functions derived from the state
graph. We also performed experiments varying o however
the results were not significantly changed. Basis functions
created from state-action graphs continually outperform
basis functions created from state graphs.

50
} N 'mem | Prim. State Graph
. =t A J, . N —#— Prim. State-Action Graph
\ " 3 ot AL = = - State Graph
i YRS
" N * ii‘j ,% State-Option Graph
40ffa ‘i’? i'

R’M“ﬂ"ﬁrj i,kk"‘ .}

Steps to Goal

|l\||‘

f, v l'"'" "A' n .l.

2y

\'Il“',, R

A "
"i' l TR |. ,n"'.nhl,\"" h

|\~ ’5 vy

U

“?:

'-“: ,u'l ‘
\

L 1 L
150 200 250
Number Of Learning Iterations

L
100

Figure 9. Steps to goal in the four room gridworld.

We performed similar experiments to compare the
two graph Laplacians on both state and state-action graphs
in the eight room gridworld. In these experiments we
systematically varied the number of basis functions used
in function approximation. The results of each experiment
was averaged over 200 trials and each experiment was
performed for 600 learning iterations. Figure 10 shows
that once again the state-option graphs out perform the
state graphs. In the eight room grid world we use 780
(out of 2520) basis functions on the state-option graph.
The best results using a state graph required 2400 basis

functions. Both results are shown using the normalized
graph Laplacian.
100 State-option Graph
90 l. — = - State Graph i
\
80 Il -
i
70 4

60

Steps to Goal

50|

h g
a0 ':"»",,l 9
0
30} “‘ | "“ | A

J‘\{",}v"\"‘l iy ‘Jﬂ l'F'} {l ‘v\"\{‘"ﬂ'h,"'d'\ﬂ,} ‘"nla‘l"a'r'J e

20

10 I I
0 100 200 300

Number of Learning lterations

I I
400 500 600

Figure 10. Steps to goal in the eight room gridworld.

300

6.1. Scaling

One concern with this approach is that state-action graphs
grow significantly as the state-action space of the domain
increases. We illustrate one approach to scaling using
graph segmentation to break the graph into g smaller
subgraphs. We use METIS (Karypis & Kumar, 1998), an
automatic graph partitioning algorithm, to partition the
graph. METIS requires undirected graphs as its input so
we symmetrize the graph for partitioning but build the
basis functions on the partitioned directed graphs. We
perform spectral decomposition to get k' eigenvectors from
each of g smaller subgraphs where k¥’ = k/g. While the
number of basis functions remains unchanged, the basis
functions become extremely sparse allowing the matrix to
be easily compressed. Each experiment was performed for
600 learning iterations and results are averaged over 30
trials. We show results with basis functions created from
the normalized graph Laplacian on state-action graphs.

Figure 11 shows the result of scaling in the four room
gridworld. This figure compares the result of using the full
state-action graph and the partitioned state-action graph
where g = 4. In this experiment we use 260 eigenvectors.
75% of the values in the basis function matrix created on
the partitioned graph were zero.

When we attempted a similar approach on the eight
room gridworld we were not able to achieve satisfactory
performance. The best partitioning we found was with
g 10. However the agent converged to a solution
that required on average 20 more steps to find the goal.
Better results may be obtained with a more sophisticated
algorithm. The technique presented here is a simplified
version of the approach described in (Johns et al., 2007).
In this work, the graph partitioning step is used to construct
a permutation matrix that rearranges the rows and columns
of the basis matrix. A separable least-squares method
is then employed to construct a Kronecker factorization
of the permuted basis matrix. Finally, the authors use
a Markov chain Monte-Carlo algorithm to construct
reversible stochastic sub-matrices from the Kronecker
factors.

Other approaches to segmenting the graphs could also be
used. States could be clustered based on actions available
in the state. MDP homomorphisms could also be used par-
tition the graphs. Previous work has used homomorphisms
in the context of learning control in SMDPs (Ravindran &
Barto, 2003). However, homomorphisms have not, to our
knowledge, been used in basis function construction. An-
other improvement to this approach would be to perform
the graph partitioning on the directed graph. This should
lead to better partitions and thus better performance.

Learning State-Action Basis Functions for Hierarchical MDPs

Full Graph
5 - = Partitioned Graph

Steps to Goal

300
Number of Learning Iterations

Figure 11. Comparison of basis functions constructed on a parti-
tioned state-action graph vs the full graph for the four room grid-
world.

7. Conclusions and Future Work

This paper explored the effectiveness of constructing basis
functions for approximating action value functions from
the spectral decomposition of the graph Laplacian on
state-action graphs. The results show that basis functions
defined over state-action graphs are able to improve
performance over those defined over state graphs. We also
presented a technique for scaling the approach using graph
partitioning.

There are several avenues for future work. An exper-
iment examining different weighting techniques for state
option graphs needs to be carried out. We selected a simple
technique; however, other weightings are possible such as
the inverse of the discounted sum of the transition times.
Another issue is how to extend this work to continuous
domains. This extension has been carried through for
spectral bases defined on state graphs (Mahadevan et al.,
2006; Johns et al., 2007); however some modifications
of this technique would be required to accommodate
state-action graphs. Specifically, a distance metric between
actions or state-action pairs must be specified. Another
area for future work is building the graphs and basis
functions incrementally. Currently the agent must explore
the state-action space in order to create basis functions. An
incremental method would allow the agent to begin learn
control and representation simultaneously.

ACKNOWLEDGMENTS

This research was supported in part by the National Sci-
ence Foundation under grant NSF IIS-0534999. The au-
thors thank the members of their Autonomous Learning
Lab for their comments and assistance.

References

Chung, F. (1997). Spectral Graph Theory. Number 92 in CBMS
Regional Conference Series in Mathematics. American Math-
ematical Society.

Chung, F. (2005). Laplacians and the Cheeger Inequailty for Di-
rected Graphs. Annals of Combinatorics, 9, 1-19.

Golub, G., & Loan, C. V. (1989). Matrix Computations. Balti-
more, MD: The Johns Hopkins University Press. 2nd edition.

Johns, J., & Mahadevan, S. (2007). Constructing basis functions
from directed graphs for value function approximation. Pro-
ceedings of Twenty-fourth International Conference on Ma-
chine Learning (ICML).

Johns, J., Mahadevan, S., & Wang, C. (2007). Compact spectral
bases for value function approximation using kronecker factor-
ization. National Conference on Artificial Intelligence (AAAI).

Karypis, G., & Kumar, V. (1998). A fast and high quality mul-
tilevel scheme for partitioning irregular graphs. SIAM J. Sci.
Comput., 20, 359-392.

Keller, P., Mannor, S., & Precup, D. (2006). Automatic Ba-
sis Function Construction for Approximate Dynamic Program-
ming and Reinforcement Learning. Proceedings of the 23rd
International Conference on Machine Learning. New York,
NY: ACM Press.

Mahadevan, S. (2005). Proto-Value Functions: Developmental
Reinforcement Learning. Proceedings of the 22nd Interna-
tional Conference on Machine Learning (pp. 553-560). New
York, NY: ACM Press.

Mahadevan, S., Maggioni, M., Ferguson, K., & Osentoski, S.
(2006). Learning Representation and Control in Continuous
Markov Decision Processes. Proceedings of the 21st National
Conference on Artificial Intelligence. Menlo Park, CA: AAAI
Press.

Meyer, C. (1989). Uncoupling the Perron Eigenvector Problem.
Linear Algebra and its Applications, 114/115, 69-94.

Page, L., Brin, S., Motwani, R., & Winograd, T. (1998). The
PageRank Citation Ranking: Bringing Order to the Web (Tech-
nical Report). Stanford University.

Precup, D., Sutton, R., & Singh, S. (2000). Eligibility traces for
off-policy policy evaluation. Proceedings of the 17th Interna-
tional Conference on Machine Learning (pp. 759-766). Mor-
gan Kaufmann.

Ravindran, B., & Barto, A. (2003). Smdp Homomorphisms: An
Algebraic Approach to Abstraction in Semi Markov Decision
Processes. Proceedings of the Eighteenth International Joint
Conference on Artificial Intelligence (IJCAI 03) (pp. 1011-
1016). AAAI Press.

Smart, W. (2004). Explicit manifold representations for value-
function approximation in reinforcement learning. Prceedings
of the 8th International Symposium on Artificial Intelligence
and mathematics.

Sutton, R., Precup, D., & Singh, S. (1999). Between mdps and
semi-mdps: A framework for temporal abstraction in rein-
forcement learning. Artificial Intelligence, 112, 181-211.

