
Defining Object Types and Options Using MDP Homomorphisms

Alicia Peregrin Wolfe pippin@cs.umass.edu
Andrew G. Barto barto@cs.umass.edu

Computer Science Department, University of Massachusetts, Amherst, MA 01003 USA

Abstract

Agents in complex environments can have a
wide range of tasks to perform over time.
However, often there are sets of tasks that
involve similar goals on similar objects, e.g.,
the skill of making a car move to a destina-
tion is similar for all cars. This paper lays
out a framework for specifying goals that are
parameterized with focus objects, as well as
defining object type in such a way that ob-
jects of the same type share policies. The
method is agnostic as to the underlying state
representation, as long as simple functions of
the state of the object can be calculated.

1. Introduction: Modeling Objects

We typically categorize objects in our environment
into a set of types, defined by their behavior: cars are
objects that we can drive; cups hold liquid; chairs can
be used to sit on. This kind of object type definition is
particularly useful to an agent learning to function in
a complex environment: the type labels provide useful
abstractions over the details of each object’s features.

In this work, we use the MDP homomorphism (Ravin-
dran, 2004) framework to determine which objects
have the same type. Type is defined here only relative
to some task or class of tasks: for example, objects
sharing the same type for tasks involving their loca-
tion may not share the same type for color. From this
we show how to construct options that execute over
objects of a variety of types, with one policy stored for
each allowable type of object.

An option defined for a particular type can be reused
on new objects, as long as they fit the criteria for that
object type. Once we know how to pick up a cup and
drink, this skill can be applied to any cup.

Appearing in the ICML-06 Workshop on Structural Knowl-
edge Transfer for Machine Learning, Pittsburgh, PA, 2006.
Copyright 2006 by the author(s)/owner(s).

2. MDP and CMP Homomorphisms

A Markov Decision Process (MDP) is a tuple
(S, A, T,R) consisting of a state set (S), action set
(A), transition function (T : S × A× S → [0, 1]), and
expected reward function (R : S ×A → R). The tran-
sition function defines the probability of state tran-
sitions given a chosen action, while the reward func-
tion gives the expected immediate reward the agent
receives for executing an action in a particular state.

An MDP homomorphism (Ravindran, 2004) is a map-
ping, h : S×A → S′×A′, from the states and actions
of a base MDP, M = (S, A, T,R), to an abstract model
MDP M ′ = (S′, A′, T ′, R′). The mapping h consists
of a set of mappings: f : S → S′, and for each s ∈ S
a mapping gs : A → A′ that recodes actions in a pos-
sibly state-dependent way. The following properties
must hold for all state and action pairs:

R′(f(s), gs(a)) = R(s, a) (1)

T ′(f(si), gsi
(a), f(sj)) =

∑
sk|f(sk)=f(sj)

T (si, a, sk).

(2)

Subgoal options (Sutton et al., 1999) provide a formal-
ism for specifying multiple episodic subtasks within an
MDP. In addition to a reward function R, a subgoal op-
tion includes a termination condition β : S×A → [0, 1]
which specifies the probability that the option will ter-
minate in any particular state. Homomorphisms for
subgoal options add a constraint for β (Ravindran &
Barto, 2003). For all s ∈ S and a ∈ A:

β′(f(s), gs(a)) = β(s, a). (3)

When a mapping f can be found that is many-to-one,
the abstract MDP M ′ has fewer states than M . The
homomorphism conditions mean that M ′ accurately
tracks the transitions and rewards of M but at the res-
olution of blocks of states, assuming some appropriate
action recoding. These properties guarantee that poli-
cies optimal for M ′ can be lifted to produce optimal
policies of the larger MDP M (Ravindran, 2004).



Defining Object Types and Options Using MDP Homomorphisms

A Controlled Markov Process (CMP) with output is
a tuple (S, A, T, y), where S, A, and T are as in an
MDP, and y is an output function y : S × A → Y
(Wolfe & Barto, 2006). We think of the output func-
tion as singling out some aspect of the CMP as being
of interest. This function might be, for example, the
location or color of an object in the state. Given any
function r : Y → R, (S, A, T, r ◦ y) is an MDP whose
reward function is the composition of r and y. We
say that this MDP is supported by y. The termination
conditions for the family of subgoal options supported
by y have the form β : Y 7→ [0, 1].

A CMP homomorphism is a mapping from a CMP
with output (S, A, T, y) to an abstract CMP with out-
put (S′, A′, T ′, y′). The mapping functions h, f , and
gs are defined as for MDP homomorphisms. The con-
straints over the reward function (Equation 1) and ter-
mination function β (Equation 3) are replaced by a sin-
gle constraint over the output function. For all s ∈ S
and a ∈ A the following must hold:

y′(f(s), gs(a)) = y(s, a). (4)

The transition function constraints (Equation 2) do
not change. The model formed by a CMP homomor-
phism can be used to learn a policy for any supported
reward (r ◦ y) and termination (β ◦ y) functions.

Several algorithms exist for finding MDP homomor-
phisms given a model of an MDP, and can be trivially
adapted to find CMP homomorphism. All proceed
by partitioning the states and actions into two sets of
blocks: a state (S) partition {B1, ...Bm} over states,
and a state/action (SA) partition over (s, a) pairs,
{P1...Pn}. The S partition defines an f mapping:
s ∈ Bi → f(s) = s′i. Similarly, the SA partition de-
fines the set of gs mappings: (s, a) ∈ Pi → gs(a) = a′i.
The version of the homomorphism finding algorithm
used in this paper is taken from (Ravindran, 2004),
though similar examples exist in (Givan et al., 2003)
and (Boutilier et al., 2001).

3. CMPs with Objects

At this point, we have most of the basic machinery we
need to model environments with objects. The main
addition made in this section is a transformation of
the way we encode the state space: rather than being
“global”, the output function will now be associated
with some object in the environment. The methods
we have discussed so far enable us to determine which
objects have similar behavior, no matter what state
description we use.

An Object CMP consists of a CMP, a set of object

identifiers O, an object description set D (often fac-
tored into a set of features), and a set of functions,
one per object, that maps states to object descriptions:
wo : S → D. The output function z in this case maps
object descriptions to outputs: z : D → Y . Specifying
an object yields a CMP with output, (S, T, A, z ◦wo),
which can be transformed into an MDP by specifying
a reward function (r ◦z ◦wo) and termination function
(β ◦ z ◦ wo) as in the previous sections.

The object/state specification may be as primitive or
structured as the designer wishes, as long as there
is some way to compute the desired output function,
given an object pointer. Take two examples: one state
space made up of pixels, one of features. The map-
ping wo singles out some subset of pixels or features in
each state as belonging to the object o. The features
that belong to a particular object are typically fixed
and are often named (object1.position, for example),
whereas the set of pixels belonging to an object might
change from state to state. Nonetheless, the mapping
z for object position can be calculated from this set of
pixels as well as it can from a set of features.

Since there is no guarantee that all objects will be
present in all states, the output function z ◦ wo eval-
uates to a special null output function value, ⊥, for
states in which the specified object is not present. Ob-
jects can be nested and can overlap.

We assume that the wo mappings and function z are
given. A homomorphic mapping h for any CMP and
object based output function (Mk, wo◦z) can be found
in the same way as it would be for any CMP with out-
put. The interesting question is: when do multiple
objects oi and oj share the same abstract model for
z, though their state/action mapping functions hi and
hj are different? This equivalence will be key to con-
structing options that operate over a class of objects.

3.1. Object Options

An object option subgoal consists of a reward and ter-
mination function: (β◦z, r◦z), defined for a particular
object feature z. For example, in a Blocks World CMP
one option subgoal might be to move the focus block to
a particular location. The reward function would map
the output function z = “block position” to a reward
that is positive when the desired location is achieved
and negative otherwise.

All other parts of the option structure follow from the
reward function and termination function. Applying
the subgoal to a CMP Mi and object oj yields a sub-
goal option MDP (Si, Ai, Ti, β ◦ z ◦ woj

, r ◦ z ◦ woj
),

from which a policy can be calculated.



Defining Object Types and Options Using MDP Homomorphisms

(a)

. . .

(b)

. . .

. . .

Figure 1. Example clusters from a blocks world with 4
blocks. Blocks in (a) all behave the same way, blue blocks
(the dark blocks) in (b) are more slippery. Dashed squares
represent blocks of the two state partitions.

We will denote by h(M) the model formed by applying
h to the CMP M. Consider what happens when hi

and hj are valid homomorphisms for z ◦ woi
and z ◦

woj
respectively, and hi(Mk) = hj(Ml) = Ma. Any

optimal policy in Ma for a task (r ◦ z, β ◦ z) can be
lifted to Mk using h−1

i for oi and to Ml using h−1
j for

oj . The agent therefore only needs to store one policy
which works for both pairs (Mk, oi) and (Ml, oj). If
two objects have exactly the same abstract model set
over all CMPs in which they could appear, we say that
they have the same type for z.

Because it is also two objects share models for only a
subset of the CMPs in which they could appear, our
definition of object type forms a partial ordering over
objects. If the function u maps objects in O onto a
partially ordered set of type symbols, we would like
to find a consistent type mapping for the output func-
tion z and set of CMPs C = {Mi}. Consistent type
mappings have the following property: if u(oi) � u(oj)
then for any Mk where hi is a homomorphic mapping
for z ◦ woi

, there is a CMP Ml for which hj is a ho-
momorphic mapping for z ◦woj

and produces a model
with the following property: hi(Mk) = hj(Ml).

Figure 1 compares partition blocks for two different
blocks world state spaces: one in which all blocks have
identical behavior, and one in which blue blocks are
more slippery than others. One consistent u mapping
for the output function “block position” for Figure 1b
is u(blue blocks) = α, u(other colors) = γ, α 6= γ. In
Figure 1a all blocks have the same type.

Policies learned for one object can be applied to any
object of the same or lesser type. The option may
specify a single type, or a range of types allowable for
the focus object. The option must store a separate
policy for each type of object which is allowable as a
parameter. The generic policies are then mapped back
to the true CMP by the same lifting process used in

MDP homomorphisms.

Despite changes in the policy, the reward function is
consistent across all possible parameter assignments.
The goal of moving a block to position k is the same,
whether the block is blue or green—only the method
of executing that goal and the probability of success
change if the type of the focus object changes.

3.2. Algorithm

To find reductions that tell us which objects have
the same type, some modifications to the original
homomorphism-finding algorithms are necessary.

We start with an output function z, and a set of one
or more object CMP models C = {Mi}, each of which
has a set of objects Oi. For each sample CMP Mi,
we construct a set of n = ‖Oi‖ CMPs of the form
(Si, Ai, Ti, z ◦ wok

). The essential question is: which
CMP/object pairs are isomorphic?

The algorithms for finding homomorphisms can be ex-
ecuted over multiple CMPs at once: the algorithm
simply considers the combination of the two state and
action spaces and proceeds. If, upon termination, the
states and actions of two CMPs map to the same ab-
stract states and actions (see Figure 1), their reduced
models are isomorphic.

4. Experiments

All of these experiments used the algorithm above to
create a library of models for 3-block blocks worlds.
In each case the dynamics of the environment were
changed to create a different type mapping.

For the 3-block blocks world with dynamics matching
Figure 1b, the algorithm correctly finds two types of
blocks, with 6 abstract CMP models, 3 used by blue
blocks and 3 by focus blocks of other colors.

For our second example, consider a blocks world in
which all blocks of any given color c stick to blocks
of the same color. When a block sticks to the block
beneath it, the probability of successfully lifting it and
moving it to another pile is lower. While all blocks in
this example have the same type, their abstract state
mapping function is different: two yellow blocks with
a blue focus block yields different dynamics than the
same CMP with a yellow focus block. The algorithm
finds the correct set of 4 abstract CMPs: M ′

1 in which
all three blocks have different colors (30 states), M ′

2

in which the other two blocks match each other but
not the focus block (30 states), M ′

3 in which one other
block matches the focus block color (60 states) and
M ′

4 in which all three blocks have the same colors (30



Defining Object Types and Options Using MDP Homomorphisms

Table 1. Abstract CMPs for the blocks world in which blue
and green blocks stick to other blocks of the same color.

Models Used by Focus Block
Focus: M ′

1 (30) M ′
2 (30) M ′

3 (60) M ′
4 (30)

blue X X X X
green X X X X
red X X

yellow X X

states).

Finally, for a simple example of types which are par-
tially ordered, consider a blocks world in which blue
and green blocks stick to blocks of the same color,
while all other combinations of blocks interact nor-
mally. This results in 4 abstract CMPs, shown in Ta-
ble 1, and two object types. The first type (blue or
green focus blocks) uses all 4 models, while the second
type (other blocks) uses only the two simpler models.

As expected, learning policies for supported reward
functions in the reduced models is faster and has the
same optimality guarantees as learning in the complete
model, however, due to lack of space we do not include
the results here.

5. Discussion

One alternative to the method above would be to sim-
ply add the object pointer to the state space and use
the resulting state space for the option. This would re-
sult in one large reduced CMP, consisting of the union
of the CMPs for each type of object. Planning in this
large CMP would be significantly slower — it is much
more efficient to divide the CMP into its component
pieces for each object type (none of which interact)
and solve each individually.

Another advantage to modeling type explicitly is that
the features that determine the type of an object do
not change over time, if type is defined as it is defined
here. This means that these features can be examined
once at the outset of the option using an object, but do
not need to be reexamined after the MDP correspond-
ing to the type has been chosen. A similar argument
could be made for the objects which interact with the
focus object — they also have “type” though it is not
defined in the same way as for focus objects. One of
the next elements of this research will be to define type
for related objects, as well.

We focused in this paper on the type of focus objects
because we wished to define the minimum amount of

communication necessary between the upper level op-
tion and lower level. Object parameters define a lim-
ited, but useful, range of control for the upper level
option, while leaving to the option the definition of
all related state information. The upper level op-
tion controls the reward function of the lower level
option through the option parameters, but not the
policy or state space, though these are completely de-
termined by the reward. This translation from ob-
ject pointer/option id to reward function and state
space/policy enables the upper level option to select
objects based on criteria which can be completely or-
thogonal to the features used within the option.

In order to use these parameterized options in the con-
text of a higher level task, the agent must learn to as-
sign objects to the pointers. This is closely tied to the
notion of deixis (Agre & Chapman, 1987).

If there are some features of the object which cannot
be observed which determine its true type (if the color
of blue blocks in Figure 1 was unobserved) the agent
is in a special type of POMDP in which the type of
the object must be discovered through interaction.

6. Acknowledgements

This research was facilitated in part by a National Physi-
cal Science Consortium Fellowship and by stipend support
from Sandia National Laboratories, CA. This research was
also funded in part by NSF grant CCF 0432143.

References
Agre, P. E., & Chapman, D. (1987). Pengi: An implementation of a the-

ory of activity. Proceedings of the 6th National Conference on Artificial
Intelligence.

Boutilier, C., Reiter, R., & Price, B. (2001). Symbolic dynamic program-
ming for first-order mdps. Proceedings of the 17th International Joint
Conference on Artificial Intelligence (pp. 690–697).

Givan, R., Dean, T., & Greig, M. (2003). Equivalence notions and model
minimization in markov decision processes. Artificial Intelligence, 147,
163–223.

Kersting, K., & Raedt, L. D. (2003). Logical markov decision programs.
Proceedings of the 20th International Conference on Machine Learning.

Ravindran, B. (2004). An algebraic approach to abstraction in reinforcement
learning. Doctoral dissertation, University of Massachusetts.

Ravindran, B., & Barto, A. G. (2003). Smdp homomorphisms: An al-
gebraic approach to abstraction in semi markov decision processes.
Proceedings of the 18th International Joint Conference on Artificial In-
telligence (pp. 1011–1016). AAAI Press.

Sutton, R. S., Precup, D., & Singh, S. P. (1999). Between mdps and
semi-mdps: A framework for temporal abstraction in reinforcement
learning. Artificial Intelligence, 112, 181–211.

Wolfe, A. P., & Barto, A. G. (2006). Decision tree methods for find-
ing reuseable mdp homomorphisms. Proceedings of the 21st National
Conference on Artificial Intelligence. To appear.


