
Autonomous Shaping: Knowledge Transfer in Reinforcement Learning

George Konidaris GDK@CS.UMASS.EDU
Andrew Barto BARTO@CS.UMASS.EDU

Autonomous Learning Laboratory, Computer Science Dept., University of Massachusetts at Amherst, 01003 USA

Abstract
We introduce the use of learned shaping rewards
in reinforcement learning tasks, where an agent
uses prior experience on a sequence of tasks to
learn a portable predictor that estimates interme-
diate rewards, resulting in accelerated learning
in later tasks that are related but distinct. Such
agents can be trained on a sequence of relatively
easy tasks in order to develop a more informative
measure of reward that can be transferred to im-
prove performance on more difficult tasks with-
out requiring a hand coded shaping function. We
use a rod positioning task to show that this signif-
icantly improves performance even after a very
brief training period.

1. Introduction
Although reinforcement learning is well suited to many se-
quential decision problems, tasks characterized by delayed
reward—where a long sequence of unrewarded actions are
required to reach a reward state—remain difficult to solve
quickly, both in terms of finding initial solutions, and in
terms of convergence toward an optimal solution. One ef-
fective way to speed up learning in such cases is to create
a more informative reward signal using “shaping rewards”
(Dorigo & Colombetti, 1998; Ng et al., 1999; Perkins &
Hayes, 1996) or “progress indicators” (Matarić, 1997). Un-
fortunately, this requires significant design effort, results in
less autonomous agents, and may alter the optimal solution,
leading to unexpected behavior.

We propose that agents that must repeatedly solve the same
type of task should be able to learn their own shaping re-
wards, and thus learn to solve difficult tasks quickly af-
ter a set of relatively easy training tasks. This is accom-
plished by learning over two separate representations, each
in a different space: a reinforcement learning representa-

Appearing in Proceedings of the 23 rd International Conference
on Machine Learning, Pittsburgh, PA, 2006. Copyright 2006 by
the author(s)/owner(s).

tion in problem-space that is Markov for the particular task
at hand, and one in agent-space that may not be Markov
but that is retained across successive task instances (each
of which may require a new problem-space, possibly of a
different size). The agent learns to initially estimate reward
for novel states from “sensations” in agent-space in order
to speed up reinforcement learning in problem-space.

Although this method also applies to other types of se-
quential decision problems, in this paper we focus on goal-
directed exploration tasks because they most clearly illus-
trate our point, and we present the results of a rod position-
ing experiment in which our method significantly improves
performance after only a brief period of training.

2. Background
2.1. Shaping

Shaping is a popular method for speeding up reinforcement
learning in general, and goal-directed exploration in partic-
ular (Dorigo & Colombetti, 1998). Although this term has
been applied to a variety of different methods within the
reinforcement learning community, only two are relevant
here. The first is the gradual increase in complexity of a
single task toward some given final level (e.g., Randløv &
Alstrøm, 1998; Selfridge et al., 1985), so that the agent
can safely learn easier versions of the same task and use
the resulting policy to speed learning as the task becomes
more complex.1 Unfortunately, this type of shaping does
not generally transfer between tasks—it can only be used
to gently introduce an agent to a single task, and is there-
fore not suited to a sequence of distinct tasks.

Alternatively, the agent’s reward function could be aug-
mented through the use of intermediate shaping rewards or
“progress indicators” (Matarić, 1997) that provide a more
informative reinforcement signal to the agent. Ng et al.

1We note that this definition of shaping is closest to its original
meaning in the psychology literature, where it refers to a process
by which an experimenter rewards an animal for behavior that
progresses toward the completion of a complex task, and thereby
guides the animal’s learning process. As such it refers to a training
technique, not a learning mechanism (see Skinner, 1938).

Autonomous Shaping: Knowledge Transfer in Reinforcement Learning

(1999) proved that an arbitrary externally specified shap-
ing reward function could be included in a reinforcement
learning system without modifying its optimal policy, and
Wiewiora (2003) showed that this is equivalent to using the
same shaping function as a non-uniform initial state value
function (Sutton & Barto, 1998). The major drawback is
that this requires significant engineering effort. In this pa-
per we show that an agent may be able to learn its own
shaping function from experience across several tasks with-
out having to have it specified in advance.

2.2. Sequences of Goal-directed Tasks

In this paper we are concerned with a sequence of goal di-
rected exploration problems (Koenig & Simmons, 1996).
In each, the agent is in an environment (characterized by a
set of states and actions and transition probability and re-
ward functions) and must get to some goal state s′, where it
will receive a positive goal reward, while receiving a move-
ment penalty for each action. We are interested in the prob-
lem of the initial discovery of s′, which is an embodied
search problem (Koenig & Simmons, 1996; Koenig, 1999)
where the agent is performing a search in an unknown en-
vironment by moving through it. This is distinct from the
problem of efficiently achieving policy convergence over
the entire state space once the goal has been found, for
which other methods exist (e.g., Thrun 1992). This allows
us to focus on the speedup we obtain in first reaching the
goal state, although we must also ensure that our method
does not damage later convergence to an optimal (or near-
optimal) policy.

3. Learning Shaping Rewards
We propose that instead of having a very informative but
difficult to engineer reinforcement signal, agents should be
able to learn to augment their reward structures by learning
which sensory patterns predict reward across tasks. This in-
formation can be used as a shaping function that provides a
first estimate for the value of newly discovered states when
learning a value function for a new task. Such an agent
would start with some pre-specified (possibly random or
uniform) shaping function, and then refine it in several re-
lated but distinct task instances over its lifetime.

We require that the sequence of goal-directed problems are
related in the sense that the agent is required to solve a
sequence of variations on the same type of task, and that
there is some commonality between the tasks so that the
agent can retain learned knowledge usefully across them.
We thus define the notion of a sequence of reward-linked
related tasks as follows.

The agent experiences a sequence of environments gener-
ated by the same underlying generative world model (e.g.,

they have the same physics, the same types of objects may
be present in the environment, etc.). From the sensations it
receives in each environment, the agent creates two repre-
sentations. The first is a state descriptor that is sufficient to
distinguish Markov states in the current environment. This
induces a Markov Decision Process (MDP) with a set of ac-
tions that are fixed across the sequence (because the agent
does not change) but a set of states, transition probabili-
ties and reward function that depend only on the task the
agent is currently facing. The agent thus works in a dif-
ferent state-space with its own transition probabilities and
reward function for each task in the sequence. We call each
of these a problem-space.

The agent also uses a second representation from the sen-
sations that are consistently present and retain the same
semantics across the sequence of tasks. This space is
shared across the sequence of tasks, and we call it agent-
space. These two representations stem from two different
representational requirements: problem-space models the
Markov description of a particular environment, and agent-
space models the (potentially non-Markov) commonalities
across a set of environments.

We thus term the tasks in the sequence related if the se-
quence consists of environments that share an agent-space.
This ensures that they are generated by the same underly-
ing world model and are experienced by the same agent.
We term the sequence reward-linked if the reward function
in each environment consistently allocates rewards to the
same types of interactions across environments (e.g., re-
ward is always x for consuming a food particle and y for
reaching a light source, no matter which environment the
agent is in). This ensures that there is some useful relation-
ship and potential correlation between sensations in agent-
space and reward across the sequence, which the agent can
learn to exploit.

One very simple example of such a sequence is a sequence
of k-armed bandit problems where arms that always give a
low payoff are colored red, broken arms (that always give
a zero payoff) are colored orange, and all other arms are
colored green. Although the color of the arms is not suf-
ficient to solve the problem even though there is no state
space (since the agent needs to decide between the green
arms), the colors are always present so the agent can learn
that red or brown arms have a low expected value, and thus
learn to prefer green ones.

Another example of such a sequence is a sequence of build-
ings where a robot that is equipped with pressure, light and
temperature gauges and a map is required to find a heat
source while avoiding obstacles. Each state in the problem-
space is uniquely determined by the robot’s map position
and pose, but the sensations received at each state are
meaningful across the sequence, and thus form the agent-

Autonomous Shaping: Knowledge Transfer in Reinforcement Learning

space. The robot can eventually learn to use its temperature
gauge as a heuristic measure of proximity to the source,
and thereby be able to find heat sources in more complex
buildings in less time, even though this heuristic is not in
general sufficient to solve the problem by itself (because
the heat sensor reading is not Markov in problem-space).

3.1. A Framework for Learning Shaping Functions

The agent is solving n problems, each with its own state
space, denoted S1, ..., Sn. We then view the ith state in
task Sj as consisting of the following attributes:

sji = (dji , c
j
i , r

j
i , v

j
i),

where dji is the problem-space state descriptor (sufficient to
distinguish this state from the others in Sj), c

j
i is an agent-

space sensation, rji is the reward obtained at the state and vji
is the state’s value (expected total reward for action start-
ing from the state). We are not concerned here with the
form of dji , except to note that it may contain or be disjoint
from cji , and we assume that estimates of the vji values of
previously observed states have been obtained by a rein-
forcement learning algorithm, learning the value function
Vj :

Vj : dji 7→ vji .

This function maps from state descriptor to expected return,
but it is not portable between tasks because the form and
meaning of d (as a problem-space descriptor) may change
from one task to another. However, the form and mean-
ing of c (as an agent-space descriptor) does not change, so
we introduce a function L that preserves value information
between tasks and acts as the agent’s internal shaping re-
ward. L estimates expected return for novel states, given
the agent-space descriptor received there:

L : cji 7→ vji .

Once an agent has completed task Sj and has learned a
good approximation of the value of each state using Vj , it
can use its (cji , v

j
i) pairs as training examples for a super-

vised learning algorithm to learn L. Alternatively, training
could occur online during each task, although this may re-
sult in noisy or unstable shaping functions. After a reason-
able amount of training, L can be used to estimate a value
for newly observed states in problem-space, and thus pro-
vide a good initial estimate for V that can be refined using
a standard reinforcement learning algorithm. Alternatively
(and equivalently), L could be used as a separate external
shaping reward function.

4. A Rod Positioning Experiment
In this section we empirically evaluate the potential bene-
fits of a learned shaping function in a rod positioning task
(Moore & Atkeson, 1993). Each task consists of a square
workspace that contains a rod, some obstacles, and a tar-
get. The agent is required to maneuver the rod (by moving
its base coordinate or its angle of orientation) so that its tip
touches the target while avoiding obstacles. An example
20x20 unit task and solution path are shown in Figure 1.

Figure 1. A 20x20 rod positioning task and one solution path.

Following Moore and Atkeson (1993), we discretize the
state space into unit x and y coordinates and 10o angle in-
crements. Thus, each state in the problem-space can be
described by two coordinates and one angle, and the ac-
tions available to the agent are movement of one unit in
either direction along the rod’s axis, or a 10o rotation in ei-
ther direction. If a movement causes the rod to collide with
an obstacle it results in no change in state, so the portions
of the state space where any part of the rod would be in-
terior to an obstacle are not reachable. The agent receives
a penalty of 1 for each action, and a reward of 1000 when
reaching the goal (whereupon the episode ends).

We augment the task environment with five beacons, each
of which emits a separate signal that drops off with the
square of the Euclidean distance from a strength of 1 at the
beacon to 0 at a distance of 60 units. The tip of the rod has
a gradient sensor array that can detect the values of each of
these signals at the adjacent state in each action direction.
Since these beacons are present in every task, the sensor
readings are an agent-space and we include an element in
the agent that learns L and uses it to predict reward for each
adjacent state given the five signal levels present there.

The usefulness of L as a reward predictor will depend
on the relationship between beacon placement and reward
across a sequence of individual rod positioning tasks. Thus
we can consider the beacons as simple abstract signals
present in the environment, and experimentally evaluate the
usefulness of L while manipulating their relationship to re-
ward across the sequence.

Autonomous Shaping: Knowledge Transfer in Reinforcement Learning

4.1. Experimental Structure

In each experiment, the agent is exposed to a sequence of
training experiences, during which it is allowed to update
L. After each training experience, it is evaluated in a large
test case, during which it is not allowed to update L.

Each individual training experience places the agent in a
small task, randomly selected from a randomly generated
set of 100 such tasks, where it is given sufficient time to
learn a good solution. Once this time is up, the agent up-
dates L using the value of each visited state and the sensory
signal present at it, before it is tested on the much larger
test task. All state value tables are cleared between training
episodes.

Each agent performed reinforcement learning using
Sarsa(λ) (λ = 0.9, α = 0.1, γ = 0.99, ε = 0.01) in
problem-space and used training tasks that were either
10x10 (where it was given 100 episodes to converge in each
training task), or 15x15 (when it was given 150 episodes
to converge), and tested in a 40x40 task.2 L was a lin-
ear estimator of reward, using either the five beacon signal
levels and a constant as features (requiring 6 parameters,
and referred to as the linear model) or using those with five
additional features for the square of each beacon value (re-
quiring 11 parameters, referred to as the quadratic model).
All parameters were initialized to 0, and learning for L
was accomplished using gradient descent with α = 0.001.
We used two experiments with different beacon placement
schemes.

4.2. Following a Homing Beacon

In the first experiment, we always placed the first beacon at
the target location, and randomly distributed the remainder
throughout the workspace. Thus a high signal level from
the first beacon predicts high reward, and the others should
be ignored. This is a very informative indication of reward
that should be fairly easy to learn, and can be well approx-
imated even with a linear L. Figure 2 shows the 40x40 test
task used to evaluate the performance of each agent, and
four sample 10x10 training tasks.

Figure 3 shows the number of steps (averaged over 50 runs)
required to first reach the goal against the number of train-
ing experiences completed by the agent for the four types
of learned shaping elements (linear and quadraticL, and ei-
ther 10x10 or 15x15 training worlds). It also shows the av-
erage number of steps required by an agent with a uniform
initial value of 0 (agents with a uniform initial value of 500
performed similarly while first finding the goal). Note that

2We note that in general the tasks used to train the agent need
not be smaller than the task used to test it. We used a small train-
ing task in this experiment to highlight the fact that the size of
problem-space may differ between related tasks.

a b

Figure 2. The homing experiment 40x40 test task (a) and four
sample 10x10 training tasks (b). Beacon locations are shown as
crosses, and the goal is shown as a large dot. Note that one of the
beacons is on the target in each world.

there is just a single data point for the uniform initial value
agents (in the upper left corner) because their performance
does not vary with the number of training experiences.

 20000

 40000

 60000

 80000

 100000

 120000

 2 4 6 8 10 12 14 16 18 20

S
te

ps
 to

 G
oa

l

Training Episodes

Uniform
10Lin

10Quad
15Lin

15Quad

Figure 3. The average number of steps required to first reach the
goal in the homing task.

Figure 3 shows that training significantly lowers the num-
ber of steps required to initially find the goal in all cases,
reducing it after one training experience from over 100, 000
steps to at most just over 70, 000, and by six episodes to be-
tween 20, 000 and 40, 000 steps. This difference is statisti-
cally significant (by a t-test, p < 0.01) for all combinations
of L and training task sizes, even after just a single training
experience. Figure 3 also shows that the complexity of L
does not appear to make a significant difference to the long-
term benefit of training (probably because of the simplicity
of the reward indicator), but the size of the training task

Autonomous Shaping: Knowledge Transfer in Reinforcement Learning

does. The difference between the number of steps required
to first find the goal for 10x10 and 15x15 training task sizes
is statistically significant (p < 0.01) after 20 training expe-
riences for both linear and quadratic forms of L, although
this difference is clearer for the quadratic form, where it is
significant after 6 training experiences.

Figure 4 shows the number of steps (averaged over 50 runs)
required to reach the goal as the agents repeat episodes in
the test task, after having been allowed 20 training experi-
ences (L is still never updated in the test world), as well as
the number required by agents with value tables uniformly
initialized to 0 and 500. This illustrates the overall learn-
ing performance of the agents over time on a single new
task once they have had many training experiences against
that of agents using uniform initial values. Figure 4 shows
that the learned shaping heuristic significantly speeds up
the first few episodes and does not damage convergence,
taking slightly longer than an agent using 0 as a uniform
initial value but about the same as that of an agent using
500. This suggests that once a solution is found the agent
must then “unlearn” some of its overly optimistic heuris-
tic estimates to achieve convergence. Note that a uniform
initial value of 0 works well here because it discourages ex-
tended exploration, which is not necessary in deterministic
domains such as this.

0 20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10

12
x 104

Episodes

S
te

ps
 to

 G
oa

l

Uni0
Uni500
10Lin
10Quad
15Lin
15Quad

Figure 4. Steps to reward against episodes in the homing test
world after 20 training episodes.

4.3. Finding the Center of a Beacon Triangle

In the second experiment, we always arranged the first three
beacons in a triangle at the edges of the task workspace, so
that the first beacon lay to the left of the target, the second
directly above it, and the third to its right. The remaining
two were randomly distributed throughout the workspace.
This provides richer reward information, but should present
a harder function to learn. Figure 5 shows the 10x10 sam-

ple training tasks given in Figure 2 after modification for
the triangle experiment. The test task was similarly modi-
fied.

Figure 5. Sample 10x10 training tasks for the triangle experiment.

Figure 6 shows the number of steps initially required to
reach the goal for the triangle experiment, again showing
that even a single training experience results in a statisti-
cally significant (p < 0.01 in all cases) reduction from the
number required by an agent using uniform initial values,
from just over 100, 000 steps to at most just over 25, 000
steps after a single training episode. Figure 6 also shows
that there is no significant difference between forms of L
and size of training task. This suggests that the richness
of the useful signal more than makes up for it being dif-
ficult to learn correctly—in all cases the performance of
agents learning using the triangle beacon arrangement is
better than that of those learning using the homing bea-
con arrangement. Figure 7 shows again that the initial
few episodes of repeated learning in the test task are much
faster, and that training does not affect convergence, with
the total number of episodes required to converge again ly-
ing somewhere between the number required by an agent
initializing its value table to 0 and one initializing it to 500.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 2 4 6 8 10 12 14 16 18 20

S
te

ps
 to

 G
oa

l

Training Episodes

Uniform
10Lin

10Quad
15Lin

15Quad

Figure 6. The average number of steps required to first reach the
goal in the triangle task.

4.4. Summary

The above two experiments show that an agent that can
learn its own shaping rewards through training can find an
initial solution to a novel task much faster than an agent

Autonomous Shaping: Knowledge Transfer in Reinforcement Learning

0 20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10

12
x 104

Episodes

S
te

ps
 to

 G
oa

l

Uni0
Uni500
10Lin
10Quad
15Lin
15Quad

Figure 7. Steps to reward against episodes in the triangle test task
after 20 training episodes.

that uses uniform initial values, even after only a few train-
ing experiences. They also show that such training does not
damage the agent’s convergence characteristics, even after
many training episodes.

The results also seem to suggest that a better training envi-
ronment is helpful but that its usefulness decreases as the
signal predicting reward becomes richer, and that increas-
ing the complexity of L does not appear to significantly
improve the agent’s performance. Although this is a very
simple domain, it suggests that given a rich signal from
which to predict reward even an inaccurate estimation of
reward is sufficient to improve performance.

5. Related Work
Prior reinforcement learning research exists on finding use-
ful macro-actions across sequences of tasks (Bernstein,
1999; Pickett & Barto, 2002; Thrun & Schwartz, 1995)
and building structured representations of a state space to
speed up later learning (Mahadevan, 2005; Van Roy, 1998).
However, these approaches require tasks that are in the
same state space and differ only in their reward functions.
Taylor et al. (2005) use a hand-coded transfer function to
seed one task’s value function with learned values from an-
other similar task with a potentially different state space,
but they require the explicit manual construction of a trans-
fer function between each pair of value functions. An ap-
propriate sequence of tasks in the research presented here
requires only that the agent-space semantics (including se-
mantics with respect to reward) remain consistent, so each
task may have its own completely distinct state space.

Konidaris and Hayes (2004) show using a similar method
that using training mazes to learn associations between re-

ward and strong signals at reward states results in a signif-
icant improvement in the total reward obtained by a real-
istically simulated robot learning to find a puck in a novel
maze. The research presented here employs a more general
mechanism where the agent learns a heuristic from all of
the states that it has visited.

6. Discussion
The results presented above suggest that agents that employ
reinforcement learning methods can be augmented to use
their experience to learn their own shaping rewards. This
could result in agents that are more flexible than those with
pre-engineered shaping functions. It also creates the pos-
sibility of training such agents on easy tasks as a way of
equipping them with knowledge that will make harder tasks
tractable, and is thus an instance of an autonomous devel-
opmental learning system (Weng et al., 2000). In addition,
this system provides another example of the use of layered
learning systems (Stone & Veloso, 2000), and of the inter-
esting and potentially complex behavior that results from
the interaction of two learning systems.

However, the ideas presented here have some drawbacks.
Determining the form of c (the agent-space descriptor) by
identifying a relevant agent-space and selecting an appro-
priate learning method for L create a potentially difficult
design problem. We expect that most of the difficulty will
lie in choosing an appropriate agent-space in order to allow
for the use of a relatively simple learning algorithm, and to
facilitate rapid learning and short training times.

In some situations, the learning algorithm chosen for L, or
the sensory patterns given to it, might result in an agent that
is completely unable to learn anything useful. We do not
expect such an agent to do much worse than one without
any shaping rewards at all.

Another potential concern is the possibility that a mali-
ciously chosen or unfortunate set of training tasks could
result in an agent that performs worse than one with no
training. Fortunately, such agents will still eventually be
able to learn the correct value function (Ng et al., 1999).

6.1. Learned Shaping Rewards and Generalization
through Value Function Approximation

Learned shaping rewards are used to assign initial val-
ues to novel states in problem-space in order to accelerate
the learning of accurate values for those states. This is a
form of generalization, where the shaping function retains
knowledge from experience with the environment and uses
it to better predict state values in later tasks. As such it is
strongly related to the use of value function approximation
for generalization across states.

Autonomous Shaping: Knowledge Transfer in Reinforcement Learning

In a value function approximation system, some compact
value function representation (such as a neural network) is
used instead of a value table, and it is trained to represent
values experienced from visited states. Novel states evalu-
ated with this value function may therefore be given values
based on previous experience in similar states, and thus al-
ready include previously learned knowledge.

The use of learned shaping rewards coupled with a value
function table is distinct for two reasons. First, it only
generalizes forwards, and not backwards: novel states are
given initial values based on generalization, but the val-
ues of previously encountered states are never disturbed.
Therefore although learned shaping values do not general-
ize as broadly, they cannot cause an algorithm that would
otherwise converge to fail to do so, which can occur with
function approximation (Sutton & Barto, 1998). They may
therefore be considered a safer form of generalization.

Second, value function approximation usually only gener-
alizes within a single task. An approximated value function
that is used to generalize over one MDP may not be appli-
cable to another related but distinct MDP. The semantics
of each state descriptor may change (as a trivial example,
consider two MDPs that are identical to each other but with
different goal states), or the size of the input to the approx-
imator may change. A learned shaping function, by virtue
of its split representation, can be used to generalize across a
sequence of distinct tasks provided the agent-space seman-
tics are consistent.

There is also an important point that should be made here:
there is a formal difference between an MDP state label
in problem-space and the sensory input received at that
state. A problem-space state descriptor should ideally be
the smallest piece of information that is sufficient to dis-
criminate between states, so that the agent is solving the
smallest possible faithful Markov model of the underlying
problem. Using sensor input as a state descriptor might
facilitate generalization, but it also often results in a state
space that is both very large (thus necessitating generaliza-
tion) and too small (because it is not Markov). It may be
better to factor the sensory input so that (some function of)
a small subset of it is used as a problem-space Markov state
descriptor, and the remainder used by a learned shaping
function or some other separate element for generalization.

This is most obviously true for navigation problems. Re-
turning to the example of the robot learning to find a heat
source in a map, the map itself is sufficient to distinguish
the robot’s states, and including its sensor readings into its
state descriptor would vastly increase the size of the state
space without changing the size of the underlying problem.
It is much easier, and conceptually much cleaner, to use the
compact descriptor given by some discretization of the map
to generate a very small problem-space, and then use a sep-

arate learning element to generalize by learning to estimate
novel state rewards from its remaining sensors.

6.2. Shaping Rewards as a Search Heuristic

It is unlikely that in any useful scenario an agent will be
able to learn a completely accurate measure of value us-
ing L. If it could, we could do away with reinforcement
learning altogether and simply ascend L. Instead, we ex-
pect to be able to learn a rough approximation of value that
functions as a heuristic.

In standard classical search algorithms, such as A∗, a
heuristic gives an inexact measure for the distance between
a particular node in the search space and the goal. In an em-
bodied search, the agent must physically search some un-
known environment, and thus can only keep a single node
“open” at any one time. In algorithms like Learning-Real-
Time A∗ (LRTA∗) (Korf, 1990), the agent uses a heuristic
measure combined with the cost of moving to the nodes
it can immediately reach to determine where to go next.
Since Real-Time Dynamic Programming (RTDP) is the
stochastic generalization of LRTA∗ (Barto et al., 1995),
and shaping rewards act to order the selection of unvisited
nodes, shaping rewards provide a heuristic initialization of
the value function in embodied search problems Therefore,
agents solving embodied search problems that are able to
learn their own shaping functions are learning their own
heuristics.

7. Conclusion
In this paper we introduced the use of learned shaping re-
wards in a sequence of goal-directed reinforcement learn-
ing tasks. This is accomplished by having two separate
representations: a Markov problem-space representation
for reinforcement learning that differs for each task, and
an agent-space representation that does not. The second
representation is used to learn a shaping function that can
provide value predictions for novel states across tasks in
order to speed up learning in problem-space. Our experi-
mental results show that the use of learned shaping rewards
can significantly improve performance in a rod positioning
experiment with even a single training experience.

Acknowledgments
We would like to thank Gillian Hayes, Colin Barringer,
Sarah Osentoski, Özgür Şimşek, Michael Littman, Ashvin
Shah and Pippin Wolfe for their useful comments. An-
drew Barto was supported by the National Science Founda-
tion under Grant No. CCF-0432143 and by a subcontract
from Rutgers University, Computer Science Department,
under award number HR0011-04-1-0050 from DARPA.
Any opinions, findings and conclusions or recommenda-

Autonomous Shaping: Knowledge Transfer in Reinforcement Learning

tions expressed in this material are those of the authors and
do not necessarily reflect the views of the National Science
Foundation.

References
Barto, A., Bradtke, S., & Singh, S. (1995). Learning to act

using real-time dynamic programming. Artificial Intelli-
gence, 72, 81–138.

Bernstein, D. (1999). Reusing old policies to accelerate
learning on new MDPs (Technical Report UM-CS-1999-
026). Department of Computer Science, University of
Massachusetts at Amherst.

Dorigo, M., & Colombetti, M. (1998). Robot shap-
ing: An experiment in behavior engineering. MIT
Press/Bradford Books.

Koenig, S. (1999). Exploring unknown environments with
real-time search or reinforcement learning. Advances in
Neural Information Processing Systems (NIPS) 12 (pp.
1003–1009).

Koenig, S., & Simmons, R. (1996). The effect of represen-
tation and knowledge on goal-directed exploration with
reinforcement-learning algorithms. Machine Learning,
22, 227 – 250.

Konidaris, G., & Hayes, G. (2004). Estimating future re-
ward in reinforcement learning animats using associative
learning. From Animals to Animats 8: Proceedings of the
8th International Conference on the Simulation of Adap-
tive Behavior (pp. 297–304).

Korf, R. (1990). Real-time heuristic search. Artificial In-
telligence, 42, 189–211.

Mahadevan, S. (2005). Proto-value functions: Devel-
opmental reinforcement learning. Proceedings of the
Twenty Second International Conference on Machine
Learning (ICML 05).

Matarić, M. (1997). Reinforcement learning in the multi-
robot domain. Autonomous Robots, 4, 73–83.

Moore, A., & Atkeson, C. (1993). Prioritized sweeping:
Reinforcement learning with less data and less time. Ma-
chine Learning, 13, 103–130.

Ng, A., Harada, D., & Russell, S. (1999). Policy invariance
under reward transformations: theory and application to
reward shaping. Proceedings of the 16th International
Conference on Machine Learning (pp. 278–287).

Perkins, S., & Hayes, G. (1996). Robot shaping – prin-
ciples, methods and architectures. Artificial Intelligence
and Simulation of Behaviour 1996 – Workshop on Learn-
ing in Robots and Animals.

Pickett, M., & Barto, A. (2002). Policyblocks: An algo-
rithm for creating useful macro-actions in reinforcement
learning. Proceedings of the Nineteenth International
Conference of Machine Learning (ICML 02) (pp. 506–
513).

Randløv, J., & Alstrøm, P. (1998). Learning to drive a bicy-
cle using reinforcement learning and shaping. Proceed-
ings of the 15th International Conference on Machine
Learning (pp. 463–471).

Selfridge, O., Sutton, R. S., & Barto, A. G. (1985). Train-
ing and tracking in robotics. Proceedings of the Ninth
International Joint Conference on Artificial Intelligence
(pp. 670–672).

Skinner, B. F. (1938). The behavior of organisms: An
experimental analysis. New York: Appleton-Century-
Crofts.

Stone, P., & Veloso, M. (2000). Layered learning. Pro-
ceedings of the 11th European Conference on Machine
Learning (pp. 369–381). Barcelona, Spain: Springer,
Berlin.

Sutton, R., & Barto, A. (1998). Reinforcement learning:
An introduction. Cambridge, MA: MIT Press.

Taylor, M., Stone, P., & Liu, Y. (2005). Value functions for
RL-based behavior transfer: a comparative study. Pro-
ceedings of the Twentieth National Conference on Artifi-
cial Intelligence (AAAI-05).

Thrun, S. (1992). Efficient exploration in reinforcement
learning (Technical Report CS-92-102). Carnegie Mel-
lon University.

Thrun, S., & Schwartz, A. (1995). Finding structure in
reinforcement learning. Advances in Neural Information
Processing Systems (pp. 385–392). The MIT Press.

Van Roy, B. (1998). Learning and value function approx-
imation in complex decision processes. Doctoral disser-
tation, Massachusetts Institute of Technology.

Weng, J., McClelland, J., Pentland, A., Sporns, O., Stock-
man, I., Sur, M., & Thelen, E. (2000). Autonomous men-
tal development by robots and animals. Science, 291,
599–600.

Wiewiora, E. (2003). Potential-based shaping and Q-value
initialization are equivalent. Journal of Artificial Intelli-
gence Research, 19, 205–208.

